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PREFACE

I am pleased to present Volume 51 of Advances in Clinical Chemistry

series for the year 2010.

In the second volume for this year, a number of diverse topics are reviewed.

This volume leads off with a review on the importance of prothrombin frag-

ments in pathophysiologic processes such as thrombosis and cardiovascular

disease, the leading causes of death in the Western world. This chapter is

followed by an interesting review on the role of carbamylation, the nonenzy-

matic modification of protein by cyanate, in atherosclerosis and its potential

exacerbation by end-stage kidney disease. The role of cocaine in cardiac

disorders ranging from arrhythmias tomyocardial infarction is next presented.

The next chapter presents a comprehensive review on the molecular mechan-

isms of EGFR and KRAS in the initiation and progression of colorectal

cancer, the third most common cancer worldwide. The next review highlights

the interesting importance of endogenous prostaglandins and their receptors in

mucosal protection and ulcer healing in the gastrointestinal tract. The follow-

ing review explores the critical need for development of accurate diagnostic

and therapeutic biomarkers for detection of pancreatic cancer, an insidious

and complex pathophysiologic process. The volume concludes with an explo-

ration of the role of urine peptidomics as a novel analytical approach to

biomarker discovery for both systemic and renal diseases.

I extend my appreciation to each contributor of Volume 51 and thank

colleagues who found time to contribute to the peer review process. I also

extend a thank you to my editorial liaison at Elsevier, Gayathri Venkatasamy,

for continued professionalism.

I hope the second volume for 2010 will be enjoyed by our readership.

As always, your comments and suggestions for up-to-date review articles for

the Advances in Clinical Chemistry series are always appreciated.

In keeping with the tradition of the series, I would like to dedicate Volume 51

to my nephew Steven on the occasion of this 30th birthday.

GREGORY S. MAKOWSKI
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1. Abstract

Urine-based proteomic profiling is a novel approach that may result in the

discovery of noninvasive biomarkers for diagnosing patients with different

diseases, with the aim to ultimately improve clinical outcomes. Given new

and emerging analytical technologies and data mining algorithms, the urine

peptidome has become a rich resource to uncover naturally occurring peptide

biomarkers for both systemic and renal diseases. However, significant ana-

lytical hurdles remain in sample collection and storage, experimental design,
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data analysis, and statistical inference. This study summarizes, focusing on

our experiences and perspectives, the progress in addressing these challenges

to enable high-throughput urine peptidomics-based biomarker discovery.

2. Introduction

Since samples can be collected noninvasively and in large amounts, urine is

a desirable choice of biological fluids for proteomic discovery of disease

related biomarkers. Urine biomarker translation to clinical practice may

lend itself to long-term disease monitoring, response to therapy, and poten-

tially home assays. Urine peptidome, a diversified pool of the naturally

occurring peptides, is emerging as a rich source for clinical biomarkers

reflecting patients’ pathophysiological status.

However, there are several barriers to the success of the field. Operational-

ly, a consistently performed protocol for urine peptidome handling and

storage needs to be developed to reduce analytical bias. Mass spectrometric

urine peptidome profilings generate vast amounts of peptide peak spectra,

but a high-confidence database of urine peptide sequences is yet to be

established. Another issue is that the large-scale mass spectrometry-based

urine peptidomics creates experimental and analytical bottlenecks. Is pooling

a viable data reduction strategy such that significant amounts of discovery

efforts can be saved? Although quantitative isotope labeling based methods,

for example, iTRAQTM, is capable of significantly reducing mass spectro-

metric time, urine peptidomics biomarker discovery may be better addressed

by using label-free MS techniques to achieve sufficient statistical power. Do

urine ‘‘housekeeping’’ peptides exist such that the common variations caused

by biological and analytical issues can be corrected? Statistically, urine

peptidomics analysis involves large-scale simultaneous hypothesis testing.

Robust statistical methods are clearly needed to extract important patterns

and trends, and guide us away from the false discoveries. Here we describe

our attempt to bring together many of the important new perspectives in

urine peptidomics and explain them in a generalized framework for urine-

based biomarker discovery.

3. Urine Peptidome is a Rich Source of Peptides of
Diversified Protein Origins

A normal adult human excretes 30–130 mg of protein and 22 mg of

peptides per day in urine [1, 2]. Naturally occurring urine peptides have

certain advantages over urine proteins as biomarkers. The roughly equal
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masses of protein and peptide in urine represent at least a 10-fold greater

molar excess of peptides. The urine proteome contains a number of abundant

proteins that obscure the lower abundance proteins, which are more likely to

be biomarkers.

The most popular approaches [3] for urine composition analyses include

hyphenated mass spectrometry-based techniques: 2D gel electrophoresis

(2DE)-MS, LC–MS, SELDITOF-MS, and capillary electrophoresis (CE)-

MS. However, only CE-MS and LC–MS, capable to directly interface with

MS/MS instruments for biomarker peptide sequencing, allow the study of

urine peptidome (in general, peptide/proteins <10 kDa) with required depth

of analysis, dynamic range, and enhanced accuracy of quantization. Initial

peptidomic studies conducted in normal urine [4] and clinical samples [5]

provided proof of principle of the effective use of prefractionation techniques

in urinary peptidome profiling. Toward high mass accuracy and resolution,

the evolution of mass spectrometric technologies in ion source (e.g., electro-

spray ionization (ESI) and matrix-assisted laser desorption/ionization

(MALDI)), mass analyzer (e.g., time-of-flight (TOF), quadrupole, quadru-

pole ion trap, linear quadrupole ion trap (LTQ), Fourier transform ion

cyclotron resonance (FTICR), orbitrap), and detector is critical to urine

peptidome in depth profiling and characterization. To determine the bio-

marker sequences, tandem mass spectrometry consisting of a combination of

two or more mass analyzers (e.g., triple quadrupole, Q-TOF, ion trap TOF,

LTQ Orbitrap, LTQ-FTICR, MALDI-TOF/TOF spectrometers) generate

peptide sequence tags, which subsequently can be utilized to identify a

peptide in a protein database [6–8]. Although each implementation is differ-

ent, tandem MS search algorithms, including SEQUEST, MASCOT, Spec-

trum Mill, X!TANDEM, etc., operate under the same general principles and

there should be little difference in the output of the algorithms so long as

consistent scoring procedures are applied [9, 10].

As a benchmark, currently a 1D HPLC (this study) or CE separation [11]

with MS is adequate for the analysis of greater than 25,000 or 100,000 urine

peptides. Nevertheless, catalogs of precise and comprehensive quantification

of urinary polypeptides in either normal or disease subjects are yet to be

constructed. Proteomic analyses have identified 1543 different urinary pro-

teins, including a large proportion of membrane proteins [12]. Recent reviews

[11, 13] showed CE-MS (capillary electrophoresis coupled with mass spec-

trometry) urine peptidomics analysis defined 116,869 different peptides fea-

tures, clustered by molecular mass and CE-migration time. Further noise

filtering reduced the number to 5010 peptide features with robust signals

across samples, of which 444 different peptide sequences from a total of 60

unique protein precursors that were determined by MSMS (‘‘Human

urinary peptide sequences v2.0’’ on the Mosaiques Diagnostics’ corporate

URINE PEPTIDE BIOMARKER DISCOVERY 183



webpage http://mosaiques-diagnostics.de/diapatpcms/mosaiquescms/front_

content.php?idcat¼257/). Of these 444 identified protein sequences, the devi-

ation between the calculated and the observed masses ranged from �42.5 to

25.72 ppm (median: 2.59 ppm, standard deviation: 9.37 ppm). Therefore, the

urine peptidome is indeed a rich source of naturally occurring peptides.

However, the identities of the majority of these urine peptides remain to be

determined.

To further explore the identities of the urine peptidome contents, urine

samples from systemic juvenile idiopathic arthritis (SJIA), Kawasaki disease

(KD), febrile illnesses (FI), necrotizing enterocolitis (NEC), and normal

volunteer (V) subjects were collected for mass spectrometric analysis. In-

formed consent was obtained from all patients and healthy controls. The

extraction protocol of the urine peptidome and proteome is as previously

described [14]. Second morning void mid-stream urine samples (1–10 ml)

were collected in sterile containers and were centrifuged at 2000�g for 20 min

at room temperature (RT) within 1 h of collection. The supernatant was

transferred, adjusted to pH 7.0, and stored frozen at �80 �C until further

use. Urinary samples were processed by centrifugal filtration at 3000 � g for

20 min at 10 �C through Amicon Ultra centrifugal filtration devices (10 kDa

cutoff) (Millipore, Bedford, MA) preequilibrated with 10 ml Milli-Q water.

The retentate (urine proteome) was washed twice, brought to the final

volume of 400 ml with 20 mM Tris–HCl (pH 7.5), and quantitated by the

bicinchoninic acid (BCA) protein assay (Pierce, Rockford, IL). The filtrate

(urine peptidome) containing the low MW naturally occurring peptides was

processed with Waters Oasis HLB Extraction Cartridges (Waters Corpora-

tion, Milford, MA), and extracted with ethyl acetate. The resulting urine

peptide samples were quantified by the 2,4,6-trinitrobenzenesulfonic acid

(TNBS) assay, as previously described [15]. Three nanomoles of peptides

were fractionated by 2D chromatography—a strong cation exchange (SCX)

column as the first and a reversed phase (RP) column as the second dimen-

sion, and then subjected to extensive MSMS sequence identification involv-

ing a Thermo Finnigan LTQ-FTICR spectrometer.

MS/MS spectra were searched by SEQUEST (BioWorksTM rev.3.3.1 SP1)

against the International Protein Index (IPI) human database version 3.5.7

restricted to human entries (76,541 sequences). mMASS, an open source

mass spectrometry tool (http://mmass.biographics.cz/), was used for manual

review of the protein identification and MS/MS ion pattern analysis for

additional validation. Different fragmentation techniques were used for the

validation of a peptide sequence, as well as for the detection, localization,

and characterization of posttranslational modifications. Peptide identifica-

tions were considered acceptable if they passed the thresholds and addition-

ally if the XCorr (the cross-correlation value from the search) was greater
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than 2.0 and the deviation between calculated and observed masses was less

than 10 ppm. This in-depth 2D MS/MSMS analysis led to the identification

of 11,988 different urine peptide sequences from 8519 unique protein

precursors.

The protein IDs of the protein precursors of the urine peptides were

uploaded to PANTHER 7.0 (http://www.pantherdb.org/) to explore the

molecular function, and to gain insight to the biological processes, and

cellular components that these urine naturally occurring peptides might

involve (Fig. 1). The PANTHER (Protein ANalysis THrough Evolutionary

Molecular function
Binding (GO:0005488)A

Catalytic activity (GO:0003824)

Receptor activity (GO:0004872)

Structural molecule activity (GO:0005198)

Transcription regulator activity (GO:
0030528)

Enzyme regulator activity (GO:0030234)

Transporter activity (GO:0005215)

Translation regulator activity (GO:0045182)

Antioxidant activity (GO:0016209)

Ion channel activity (GO:0005216)

Motor activity (GO:0003774)

Cellular components

Intracellular (GO:0005622)

B

Extracellular region (GO:
0005576)

Ribonucleoprotein complex (GO:
0030529)

Plasma membrane (GO:0005886)

Protein complex (GO:0043234)

FIG. 1. (Continued)
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Relationships) Classification System [16] is a unique resource that classifies

proteins according to Gene Ontology (GO) using published scientific experi-

mental evidence and evolutionary relationships. GO cellular component

analysis revealed the following GO terms as overrepresented: 50.50% intra-

cellular (GO:0005622), 32.00% extracellular region (GO:0005576), 0.9% ri-

bonucleoprotein complex (GO:0030529), 0.8% plasma membrane

(GO:0005886), and 0.4% protein complex (GO:0043234). In the molecular

function category, these GO terms are overrepresented: 33.30% binding

(GO:0005488), 24% catalytic activity (GO:0003824), 11.50% transcription

regulator activity (GO:0030528), 9.6% receptor activity (GO:0004872),

7.2% structural molecule activity (GO:0005198), 6% enzyme regulator activ-

ity (GO:0030234), 4.9% transporter activity (GO:0005215), 2.3% ion channel

activity (GO:0005216), 0.7% motor activity (GO:0003774), 0.5% translation

regulator activity (GO:0045182), and 0.2% antioxidant activity

(GO:0016209). In the GO biological process category, these GO terms are

overrepresented: 20.50% metabolic process (GO:0008152), 16.30% cellular

process (GO:0009987), 11.50% cell communication (GO:0007154), 8.60%

developmental process (GO:0032502), 7.0% transport (GO:0006810), 6.40%

immune system process (GO:0002376), 5.90% system process (GO:0003008),

4.70% cell cycle (GO:0007049), 4.30% cell adhesion (GO:0007155),

Biological process

Metabolic process (GO:0008152)

C
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FIG. 1. Characterization of the urine peptides’ protein precursors via PANTHER Gene

Ontology annotation.
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4.10% response to stimulus (GO:0050896), 4.0% cellular component organi-

zation (GO:0016043), 2.70% apoptosis (GO:0006915), 2.50% reproduction

(GO:0000003), 0.60% generation of precursor metabolites and energy

(GO:0006091), 0.50% homeostatic process (GO:0042592), 0.30% localization

(GO:0051179), and 0/10% regulation of biological process (GO:0050789).

Sequence determination of some urine peptides by mass spectrometry may

be difficult. This may therefore limit the number of biomarker candidates

that can be moved forward successfully for further evaluation. Based on our

current experience, there are three reasons for failure to obtain a peptide

sequence by MS/MS analysis. (1) Some peptides are too low in abundance in

the original samples for successful MS/MS. This can be overcome by increas-

ing the sample load and/or the purity of the peptide since peptide ionization

efficiency in MALDI is related to the purity of the sample. To increase

sample load and purity, a 2D or 3D HPLC purification may be required

prior to MS/MS analysis. (2) Some peptides appear to have adequate signals

in MS mode but do not produce a sufficient number of product ions in MS/

MS to allow identification. (3) Many urine peptides have posttranslational

modifications. Although some modifications, for example, hydroxylation of

proline, are recognized by the database software, we have observed other

modifications that are not normally considered by these same methods. In

these instances it is necessary to analyze the data manually. Our overall

experience is that we are able to confidently identify approximately 75% of

the urine peptides we have analyzed in our laboratory. Additionally, we have

also observed that different mass spectrometers, for example, Thermo Fin-

nigan LTQ-FTICR and ABI MALDI-TOF, can complement each other and

can therefore analyze peptides unable to be identified by only one mass

spectrometric platform MS/MS. It is possible that certain critical biomarker

peptides will not be identified by mass spectrometry. In these instances,

Edman chemistry based amino acid sequence analysis, for example, through

an Applied Biosystems 494 protein sequencer, may be a good alternative

method. We have encountered very few instances of N-terminal blocked

urine peptides and therefore expect Edman sequencing to be successful.

However, for this technique, it is necessary to purify picomole quantities of

peptides. This will likely require 2–4 steps of ion exchange and reverse phase

chromatographic fractionation of 200–500 ml of urine. Purification of the

peptide of interest can be monitored by MALDI-TOF mass spectrometry.

Together our urine peptidome sequence identification and subsequent

comprehensive GO analysis indicate that the urine peptidome contents are

derived from proteins representing diverse molecular functions, as well as

cellular processes and biological processes. Since 70% of the urinary prote-

ome/peptidome originates from the kidney and urinary tract, with the

remaining 30% from the circulation in healthy individuals, analysis of the
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urinary proteome/peptidome can be highly informative for both renal and

systemic disease diagnosis and prognosis [3]. In fact, urinary peptidomics is

emerging as a powerful noninvasive tool for diagnosis and monitoring both

systemic and renal diseases: coronary artery disease [17], acute renal tubu-

lointerstitial rejection [18], chronic renal allograft dysfunction [19], diabetic

nephropathy, and chronic kidney disease [20–22], congenital unilateral ure-

teropelvic junction obstruction in newborns [23], urothelial cancer [24], and

prostate cancer [25, 26]. We have applied HPLC coupled with MALDI-TOF

analysis to profile the urine peptidome and discovered urine peptide bio-

marker candidates that can aid in the diagnosis and prognosis of various

pediatric diseases including acute rejection (AR) following renal transplan-

tation [27], pediatric renal dysfunction, KD, SJIA, and NEC.

4. Quantitative Urine Peptidomics for Biomarker Discovery

Although LC–MS/MSMS techniques are instrumental in characterizing

the urine peptidome, quantitative urine peptidomics based biomarker dis-

covery still remains challenging due to several technological limitations.

Among the emerging quantitative technologies, iTRAQ (isobaric tags for

relative and absolute quantification) allows the concurrent protein sequence

identification and relative quantification of those peptides with known pro-

tein sequences in up to eight different biological samples in a single experi-

ments [28]. However, due to its limited throughput and current cost, iTRAQ

is not feasible to simultaneously compare large sample sizes of disease sub-

jects to achieve the discovery of differential features of sufficient statistical

power. In addition, the success of iTRAQ efforts depends on the peptide

sequence determination. Despite our increased understanding of the urine

peptidome composition, urine peptidome sequence characterization by

Mosaiques Diagnostics [11, 13] and our database (Stanford University),

combined, could only determine a small portion (1/10) of the � 100,000

peptide features revealed by the HPLC or CE coupled mass spectrometric

analysis. Therefore, iTRAQ leads to undersampling and incomplete analytic

coverage of the urine peptidome. We currently discourage urine peptide

biomarker screening employing the isotope labeling approach.

As an alternative, label-free LC–MS-based approach has been applied as a

quantitative biomarker discovery method for the experiment design of large

sample size to statistically validate the results. The label-free LC–MS ap-

proach can compare and quantify peptides with precision and accuracy

comparable to those based on isotope labeling [29]. Utilizing a strategy of

ion mapping to uncouple the MS and MSMS processes, the label-free ap-

proach is an unbiased approach to identify differential peptide features in
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which the peptides are selected on the basis of discriminant analysis of MS

signal intensities and then subjected to extensive MSMS sequence identifica-

tions. Thus, the label-free quantitative LC–MS more robustly analyzes the

full potential of the urine peptidome as a source of disease biomarkers.

The label-free LC–MS approach involves the comparison of urine pepti-

domes of different samples, and thus, multiple LC–MS spectra. However,

comparing multiple LC–MS spectra in a label-free analysis is computation-

ally intensive, demanding robust detection of LC–MS peaks, alignment of all

LC–MS peaks, and determination of the common peak indices across all

assayed samples. One analytical strategy to generate the peptide indices

across all assayed samples is to determine them experimentally. One method

of this approach [19] is to identify multiply charged peptide ions that are

reported repeatedly by LC–MS/MS analysis of the pooled samples of the

same disease category. Defined as the peptide indices across samples, tar-

geted acquisition and quantification of these peptide ions will then be per-

formed for individual samples and compared. Another method of this

approach [20] is to use the FT-ICR spectrometry to survey samples to reveal

peptide MS peaks with high accurate masses (mass deviation < 1 ppm), and

then define these peptide peaks as the common peptide indices across all

assay samples. Peptide peaks within different spectra across all assayed

samples are assumed identical if mass deviations were within 50 ppm error

for monoisotopic and within 75 ppm error for unresolved peaks.

We have employed an algorithmMASS-Conductor# (Copyright# 2008,

Ling) to computationally detect MALDI peaks from raw MS datasets, align

all sample spectra, and define common peaks as peptide peak indices for

comparative analysis. Give the large amount of raw spectrometric data, for

example, a 40 sample peptidomics study raw data encompasses 241.5 GB,

robust automatic high-throughput data management and data reduction

methods are critically needed. In LC–MALDI urine peptidomics analyses,

the m/z (mass-to-charge ratio) ranges were from 800 to 4000 with peak

density of maximum 30 peaks per 200 Da, minimal S/N ratio of 5, minimal

area of 10, minimal intensity of 150, and 200 maximum peaks per LC

fraction. The MS peaks are located in the raw spectra of the MALDI data

by an algorithm [30] that identifies sites (mass-to-charge ratio, m/z values)

whose intensity is higher than the estimated average background and the

�100 surrounding sites, with peak widths �0.5% of the corresponding m/z

value. To align peaks from the set of spectra of the assayed samples, we

applied linkage hierarchical clustering to the collection of all peaks from the

individual spectra [31]. The clustering, computed on a 24 node LINUX

cluster, was 2D, using both the distance along the m/z axis and the HPLC

fractionation time, with the concept that tight clusters represent the same

biological peak that has been slightly shifted in different spectra. We then
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extracted the centroid (mean position) of each cluster, to represent the

‘‘consensus’’ position as the peak index (bin) across all spectra. As an

example of the data reduction via peak detection, MS data points within

one subject’s LC–MALDI spot/fraction 13 were compared before and after

the peak finding and indexing processes which reduced 2530 data points (top

panel) to 62 (bottom panel) peak points (Fig. 2A; m/z 1200–1500) and from

118,142 data points (left panel) to 1690 (right panel) peak points (not shown,

m/z 900–4000). Despite massive data reduction, the overall LC–MS peak

profiles were accurately captured. Using either the raw data points
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FIG. 2. (Continued)
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(left panel) or the peak indices (right panel), Fig. 2B plotted LC–MALDI

intensity against HPLC fractions of a candidate differential peptide peak

across three subjects belonging to three different patient populations.

Together these illustrate the necessity of the data reduction and the effective-

ness of data processing algorithm. The output of data processing is essential-

ly a P � N table in which each of P peptides has been quantified in each of

the N study sample. As outlined in Fig. 3, this table, reduced from LC–MS

spectra of all samples, can be subjected to downstream statistical learning

including transformation, normalization, and unsupervised/supervised ana-

lyses suited to the experimental design to mine for a differential subset of the

P peptides, which will then be subjected to MSMS protein sequence identifi-

cation and future quantitative prospective MRM validations [32, 33].
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FIG. 2. Data reduction examples after peak finding and peak indexing in the LC–MALDI-

based urine peptidome analysis. (A) LC–MS profiles, before (left) and after (right) the data

reduction, of one urine sample in HPLC fraction 13 with m/z between 1200 and 1500. (B) Three

different class urine samples’ LC–MS profiles of a candidate differential peptide before (left) and

after (right) the data reduction across all HPLC fractions.
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5. Urine Sample Handling and Storage

To minimize potential bias or confounding factors, it is essential that urine

samples are collected and handled in standardized ways. However, signifi-

cant variations exist between different researchers’ proposed collection meth-

ods, and different clinical labs’ practice of the same protocol may not be

consistent as required. All of these sample-handling differences, even the

minor ones, can have profound impact on the outcomes of urine peptidome

discovery. To address concerns that centrifugation of urine samples\prior to

freezing at some study sites might present an obstacle, we performed an

experiment to determine the effect on the urine peptidome of freezing urine

prior to centrifugation. Five healthy volunteers’ urines were pooled and

divided into 20 equal aliquots. Five aliquots were used for each of the four

experimental arms (Fig. 4A): spin/freeze/thaw/process (S/F/T), freeze/thaw/

spin/process (F/T/S), RT (room temperature storage) 4 h/spin/freeze/thaw/

process (RT/S/F/T), and RT 4 h/freeze/thraw/spin/process (RT/F/T/S). Each

aliquot was profiled by LC–MALDI and analyzed by MASS-Conductor#
algorithm as described. The results of the analysis are shown in Fig. 4B.

Urine peptidomic features between S/F/T and F/T/S samples were compared

by Student’s t-test analysis. Thresholds of t-value of 3 or�3 (P value ¼ 0.01)

were chosen to select potentially differential features between the two classes.

This leads to 0.81% (red star) and 0.55% (blue star) potentially ‘‘differential’’

features, totaling 1% of peptide features. To evaluate these potential differ-

ential features in the context of multiple hypothesis testing, the combined

dataset of S/F/T and F/T/S was permuted 20 times. Student’s t-test was

applied to each of the permuted, therefore, random datasets with the same

thresholds of t-values to identify ‘‘falsely discovered’’ differential features.

The 20 permuted data results were plotted (Fig. 4B) as box–whisker graphs

with the originally identified ‘‘differential’’ features (red and blue stars). The

originally identified ‘‘differential’’ features are observed to fall in the range of

the false discovered ones. Therefore, we conclude there are no significant

differences between S/F/T and F/T/S samples. A similar analysis led to the

same conclusion in regard to RT/S/F/T and RT/F/T/S. From these analyses,

we conclude that the order of freezing and centrifugation does not signifi-

cantly affect the urine peptidome and therefore urine can be frozen at the

sites within 4 h of collection without prior centrifugation. This simplified

collection protocol will allow more consistent sample collection and

handling.

In another explorative study, we focused on the mass spectrometric ana-

lyses of the impact of varied durations of RT storage on the analytical

reliability and reproducibility for the urine peptidome contents. Five healthy

volunteers’ urines were pooled and divided into 30 equal aliquots. Five
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aliquots were used for each of the six experimental arms (Fig. 5A): process

immediately (day 1 urine), RT storage durations from 1 day (day 2 urine) up

to 4 days (day 5 urine), and urine sample transported using Federal Express

at RT leaving Stanford at day 1 and arriving at day 3 at Palo Alto (California

USA, 2 miles away) (FEDEX urine). Each aliquot was profiled by LC–

MALDI and analyzed by MASS-Conductor# algorithm as described. Ana-

lyses of samples RT stored for the same length of time yielded consistent

urine peptidomes (data not shown). When we compared day 1 urine pepti-

dome with those stored with different RT storage days, the chance of finding

a ‘‘significant’’ difference just by serendipity increases, therefore, Tukey HSD

(Honestly Significant Differences) test was used. Shown in Fig. 5B, the Tukey

HSD P values of the urine peptide features, comparing day 1 and other five
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urine peptidomes respectively, became progressively more spread between

0 and 1. This result indicated that the longer the storage time at RT, the

peptide features became progressively more differential in general. Among

the urines, the FEDEX urine contents changed the most, which may be due

to the uncontrolled transit environment the urine samples were exposed to.

To survey the urine peptidomes, we have analyzed 16 different uromodulin

(UMOD) C-terminal peptides (Fig. 5C) cleaved from the UMOD protein

precursor after shedding from the apical plasma membrane into the tubule

lumen [34]. Shown in Fig. 5D, there are three groups of kinetic patterns

of peptide signal change: Group 1 peptides #1, 10, 11, 12, 13, 14, 15, 16,

of which the peptide LC–MS signal decreased from day 1 to day 5; Group 2

peptide #4, of which the peptide LC–MS signal increased from day 1 to day

5; Group 3 peptide #2, 3, 5, 6, 7, 8, 9, of which the peptide LC–MS signal

increased from day 1 to day 2 or 3 then kept decreasing afterward. This

survey of peptides derived from the same origin showed that most of the

peptides’ signal decayed over time indicating time-dependent degradation.

Some of the peptides’ signal peaked at day 2 or 3 RT storage time suggesting

that prolonged peptide degradation caused the accumulation of the smaller

degradation intermediates, which in turn were subject to further downstream

degradation. Shown in Fig. 5E, all urine peptidomic features between day 1

and other RT storage times or FEDEX samples were compared by Student’s
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FIG. 5. Exploration of the impact of durations of the room temperature (RT) storage on the

urine peptidome contents. FEDEX: at day 1, one tube of urine was fedexed out, from Stanford

University and to Palo Alto (2 miles away) in California USA, and was received at day 3. (A)

Experimental design. (B) Tukey HSD (Honestly Significant Differences) analysis of samples of

different RT storage durations. (C) Uromodulin (UMOD) C-terminal urine peptides. (D)

UMODpeptide abundance quantified by LC–MALDI signals in samples of different RT storage

durations. (E) Comparative analysis of samples through different RT storage durations to the

immediate processed samples.
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t-test analysis. Thresholds of t-value of 3 or�3 (P value ¼ 0.01) were chosen

to select potentially ‘‘differential’’ features between the day 1 urine and

others. The Venn diagram analysis demonstrates the progressive increase in

number of differential peptide features with longer storage at RT. However,

over longer RT storage, there was no obvious change of the distribution of

the molecular weight (MW; Fig. 5E bottom panel) with differential (t-value

less or greater than 3) or nondifferential (t-value between �3 and 3) peptide

features, indicating the degradation of peptides was global across different

sizes. The observation of the nondifferential peptide features remained

90.44% of all peptide features even after 4 days of RT storage, suggesting a

significant pool of urine peptidomes remained largely undifferentiated across

different RT storage time points. Our results indicate that, if unable to be

frozen immediately after collection, short-term RT storage urine samples can

be allowed until freezing. However, when considering RT storage duration as

a variable in urine biomarker analyses, we recommend that the case and

control samples be handled in the exact same manner throughout the study

processes to avoid preanalytical bias.

6. Do ‘‘Housekeeping Peptides’’ Exist in Urine Peptidome?

Urine peptidomics analyses suffer two major different origins of variance

[20]: analytical issues including mass spectrometric ion suppression;

biological issues including dilution of urine by different hydration states of

the urine donors. In gene expression analysis, housekeeping genes, for exam-

ple, actin, GAPDH, and ubiquitin, are genes, typically needed for mainte-

nance of the cell, therefore, constitutively transcribed at a relatively constant

level across many or all known conditions. Given that their expression is

unaffected by experimental conditions, housekeeping genes are commonly

used for expression normalization to correct biological and analytical var-

iances. Previous CE-MS analysis [20] of the urine peptidome found 29

endogenous collagen-derived peptides, with mass evenly distributed between

1000 and 2900 Da, capable of serving as ‘‘housekeeping’’ peptides that can

sufficiently address both analytical and biological (mainly the urine dilution)

variance during the biomarker analyses of macroalbuminuria, normoalbu-

minuria, and nondiabetic subjects. To explore whether this 29-collagen-

peptide panel can be utilized as the ‘‘housekeeping’’ peptides to normalize

other disease samples, we have applied this panel to normalize the LC–

MALDI profiled urine peptidomes from 130 subjects of SAF (SJIA with

both systemic and arthritis flare, n ¼ 36), AF (SJIA with arthritis flare,

n ¼ 17), QOM (SJIA quiescence but still on medicine, n ¼ 20), V (healthy

volunteer, n ¼ 10), KD (n ¼ 24), and FI (febrile illness, n ¼ 23) diseases.
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As a simulation estimation, the mass region between 900 to 4000 Da was

divided into 29 intervals, and from each interval we selected one peptide

randomly which led to a panel of 29 peptides. This random panel construc-

tion process was repeated 500 times resulting 500 random 29-peptide panels.

These random 29-peptide panels were also utilized to normalize the 130 urine

peptidomes. To gauge the effectiveness of the normalization, coefficient of

variation (CV) was calculated for all of the urine peptide features before and

after the normalization. A successful normalization is expected to reduce the

signal variations across samples of different disease states, and the CV

distribution density peak should consequently shift to less CV values. As

expected, all 500 random 29-peptide panels (Fig. 6), revealed by 10, 50, and

90 percentile density plots, increased the global variations as CV density

peaks shift to larger CV values. However, the 29-‘‘housekeeping’’-peptide

panel shift, beyond the random panels, the CV density peak to higher values,

indicating that the previously [20] described 29-‘‘housekeeping’’-peptide

panel increased global variations of our assayed urine peptidomes. Our

results demonstrate that the previously described 29-collagen peptides, at

least, cannot be utilized as the ‘‘housekeeping’’ peptides in the systemic

pediatric disease subject normalization process. Whether universal

housekeeping peptides exist or not in urine peptidomes still remained to be

answered and yet to be explored.

FIG. 6. Normalization of 130 urine peptidomes of six class categories using either previously

described 29 endogenous collagen ‘‘housekeeping’’ peptide panel or 500 panels of randomly

selected 29-peptide sets.
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7. To Pool or Not Pool, Practical Considerations of
Benefits, Risks and Biases

The biomarker experimental design usually demands sufficiently large

sample size to achieve required analytical power. Label-free LC–MS-based

urine peptidome profiling generates large amount of data bringing significant

analytical challenges to the downstream data mining analysis. Therefore, to

pool the samples within the same subject class before LC–MS analysis was

proposed as a cost reducing approach to reduce the number of LC–MS runs,

making it possible for additional multidimensional separations to detect even

lower abundance species, and allowing higher laboratory throughput. The

pooling strategy relies on the unsupported assumption that pooling samples

averages their contents. Statistical analysis in microarray studies has found

pooling to approximate individually run samples at the cost of statistically

robust results and a significant loss in overall transcription change discov-

eries [35–38]. The effect of pooling in proteomics analysis was examined in

SELDI-TOF profiling of serum [39], which noted a loss in the number of

differential masses after pooling, and low abundance biomarkers were more

susceptible to the deleterious effects of pooling than higher abundance

biomarkers. We have explored the pooling strategy in the profiling of [27]

of urine samples (AR, acute rejection; HC, normal protocol biopsies; STA,

stable renal graft function), and found urine peptide biomarker candidates

with differential fold of abundance among pooled sample categories. We

expected that pooling affects data quality and inference in urine peptidomics,

but the exact effects are not yet quantified. As an example, the comparison of

urine peptide MHþ 1734’s LC–MALDI profiles (Fig. 7A top panel) between

the pool and the individual normal urines supports the notion that pooling

samples average the individual samples’ peptide contents. However, the

pooled LC–MALDI profile of urine peptide MHþ 2675 (Fig. 7A, bottom

panel) showed a much lower signal than that of the individuals, which most

likely was due to the ion suppression effect [40] in mass spectrometry. To

systematically qualify and quantify the pooling effects on biological conclu-

sions in the context of urine peptidomic experiments, we designed a study to

evaluate the urine peptidomics changes between normal (n ¼ 10), microal-

buminuria (n ¼ 10), and nephrotic syndrome (n ¼ 7) subjects. The ultimate

aim is to find urine-based biomarkers capable of diagnosing nephritic syn-

drome or other proteinuric diseases (Drs. Sutherland, Ling, Cohen, Stanford

University, ongoing study). To investigate the impact of pooling, differential

urine peptides between normal, microalbuminuria, and nephrotic syndrome

were identified both the fold change using pooling method and the Student’s

t-test comparing all individuals. Data points outside the two vertical lines (1st

and 99th) mark the top 2% of urine peptides selected by the pooling fold
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change method. Data points (Fig. 7B) outside the two horizontal lines (1st

and 99th) represent the top 2% of urine peptides, to be the most reliably

altered between the two contrasting classes. For discussion purposes, data

LC
-M

A
LD

I s
ig

na
l i

nt
en

si
ty

 

m/z

Pooled Individuals

1734.00 1734.00

2675.00 2675.00

A

Normal
n = 10

Micro
albuminuria 

n = 10

Micro
albuminuria 

n = 10

Nephrotic
syndrome

n = 7
Normal
n = 10

Nephrotic
syndrome

n = 7

I II III I II III I II III

IV VI IV V IV V

VII IXVIII VII IXVIII VII IXVIII

Versus Versus Versus

0–5 5 0–5 5 0–5 5

0

–10

–5

10

5

15

Log (pool 1 signal/pool 2 signal) 

S
tu

de
nt

’s
 t 

te
st

 t-
st

at
is

tic 0.004%

0.972%

0.028%

0.979% 0.021%

0.979%

0.004%0.969%

0.007%

0.983%

0.011% 

0.965% 0.032%

0.969%

0.004%0.987%

0.000%

0.994%

0.007%

0.972% 0.032%

0.972%

0.000%0.994%

B

FIG. 7. (Continued)

URINE PEPTIDE BIOMARKER DISCOVERY 201



Normal
n = 10

Micro
albuminuria

n = 10

Nephrotic
syndrome

n = 7

C

* * *
1 26 29 24 22 21 23 20 25 30 27 28 15 16 18 17 11 12 19 13 10 9 14 2 4 3 5 6 7 8

1
25
15
42
18
2
3
16
17
26
37
5
9
29
19
34
7
27
30
33
24
41
12
21
32
38
10
31
20
13
14
22
35
28
39
36
23
8
40
4
11
6

Color key

–4 –2 0 2 4

Row Z-score

FIG. 7. LC–MALDI profile comparisons of urine pooled samples and individuals. (A) Com-

parative analysis of the urine peptide’s isotopic envelop between the signals of the pool sample

and the overlaid signal values of the corresponding individuals. Top panel: urine peptide 1734.

Bottom panel: urine peptide 2675. (B) Selection of urine peptides that are differential between

assayed sample categories, based fold changes on pools (the x-axis) or by the Student’s t-test

statistics on individuals (the y-axis). The two vertical lines denote the 1st and 99th percentiles of

the fold differences between the pools of the two compared sample categories. The differential

urine selected by fold difference using the pooling method fall outside these two vertical lines.

The two horizontal lines denote the 1st and 99th percentiles of the Student’s t-test t-statistics

differences between individuals of the two compared sample categories. Nine sectors are desig-

nated I through IX on the diagram as follows: (I, III, VII, IX) urine peptides selected by both

methods. (IV, VI) urine peptides selected only by the fold difference using the pooling method.

(II, VIII) urine peptides selected only by the Student’s t-test t-statistics differences analyzing all

individuals of the compared categories. (V, center sector and not labeled, where majority of the

peptides cluster) urine peptides selected by neither method. (C). Unsupervised analysis of

normal, microalbuminuria, nephrotic syndrome peptidomes together with the three-class sample

pools (labeled with matched color stars) using a biomarker panel of 42 urine peptides capable of

differentiating these three-class subjects.
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points found by the individual profiling-based method are considered as

‘‘true positives’’ (sectors I, II, III, VII, VIII, IX). Those found by pooling

method only (sectors IV, VI) are considered as ‘‘pooling false positives’’ and

those found by individual profiling-based method only (sectors II, VIII) are

considered as ‘‘pooling false negatives.’’ Data points in sectors I, III, VII, and

IX, total of 0.057%, 0.054%, and 0.039% of all urine peptides respectively,

generally of low number, represent the differential peptides selected by both

the pooling- and individual-based methods contrasting normal versus micro-

albuminuria, microalbuminuria versus nephrotic syndrome, and normal

versus nephrotic syndrome categories. In contrast, the pooling false positives

and false negatives of all urine peptides are 1.951% and 1.948% respectively

contrasting normal versus microalbuminuria, 1.952% and 1.952% respective-

ly contrasting microalbuminuria and nephrotic syndrome, 1.966% and

1.966% respectively contrasting normal and nephrotic syndrome. All of

these indicate the ineffectiveness of pooling method resulting in a loss of

sensitivity and an increase of false positives. PAM algorithm [41] has been

applied to the three-class (normal n ¼ 10, microalbuminuria n ¼ 10, ne-

phrotic syndrome n ¼ 7) peptidomes, leading to a biomarker panel of 42

urine peptides capable of differentiating these class subjects. Upon this urine

peptide biomarker panel, an unsupervised heatmap analysis (Fig. 7C) was

performed using all individual samples and the class pools. Individual sub-

jects of the same sample category effectively clustered together. However, the

pooled nephrotic syndrome sample (red star labeled) obviously averaged the

heterogeneous individuals in this disease category to cluster with normal

samples, therefore, biomarkers indicative of nephrotic syndrome may not

be able to found by the pooling strategy. To conclude, we discourage the

pooling strategy as statistically invalid and recommend the use of nonpooled

(individual) samples for urine peptidomics analysis to mine for statistically

significant urine peptide biomarkers.

8. Multiple Hypothesis Testing, False Discovery, and
Bootstrapping Analysis

The process of biomarker discovery can be seen as a concurrent statistical

test of thousands of null hypotheses, where each peptide peak in the spectrum

is a hypothesis to be evaluated. This leads to the multiple testing problem,

demanding that the derived test statistics be adjusted to control the expected

proportion of false discoveries among all discoveries. This can be achieved

either by the overly conservative Bonferroni correction or an analysis of the

global false discovery rate (gFDR) [42]. After determining the gFDR test

threshold for significance, the local FDR (lFDR) analysis can compute and

URINE PEPTIDE BIOMARKER DISCOVERY 203



assign significance measures to all features. The lFDR analysis [43] addresses

one drawback of the gFDR, statistically distinguishing features that are close

to the threshold and therefore more likely to be falsely positive from those

that are not. Equipped with high computation power and implemented with

a permutation-based method [44], the Stanford FDR server (http://

translationalmedicine.stanford.edu/Mass-Conductor/FDR.html) has been

setup to analyze for FDR, differential abundance in proteome/peptidome/

genome analysis, and for the statistical correlation between molecular data

and clinical measurements.

It is unlikely that a single urine peptide, selected from the �100,000 mass

spectrometric peptide features, can fulfill the clinical diagnostic/prognostic

needs. Most, if not all, of the peptide features ranked by gFDR and lFDR

analyses lack the required sensitivity and selectivity.Collectively as abiomark-

er panel, markers cherry picked by empirical or machine-learning approaches

work in concert yielding much higher discriminating power. However, the

current gFDR and lFDR analyses are not tailored to compute and assign

significance measures to the final biomarker panel. In addition, having so

many peptide features relative to so few samples, creates a high likelihood

that a given specific sample not fully representative of the population can

easily distort the statistical inference. Therefore, there is a significant need for

robust statistical methods to address these analytical concerns and challenges.

In the study of NEC (a major cause of neonatal morbidity and mortality

[45]) to discover biomarkers that reliably distinguish infants with NEC

(medical group, M) from infants with NEC and most likely to progress to

severe disease requiring immediate surgery (surgical group, S), we have

identified a panel of 13 urine peptides (Ling and Sylvester, unpublished

data; Fig. 8A and B; Fisher exact P value 2.5 � 10�7). The binned LC–

MALDI MS peak data obtained for all 34 urine peptidomes (NEC

M n ¼ 17, S n ¼ 17) were analyzed for discovery of discriminant biomarkers

using algorithms [41] of nearest shrunken centroid (NSC) for biomarker

feature selection, 10-fold cross-validation analyses, and Gaussian linear

discriminant analysis (LDA) for classification analyses. To avoid bias in

samples where outliers may distort statistical inference, we utilized a boot-

strapping (resampling with replacement) technique that resampled the 34

urine peptidomes 500 times to construct 500 biomarker panel datasets. For

each of the bootstrapping set, 500 different LDA classifiers were subsequent-

ly built for ROC analysis [46, 47]. To summarize the results, the vertical

average of the 500 ROC curves was plotted, and the boxes and whiskers were

used to describe the vertical spread around the average (Fig. 8C). The mean

of the AUCs of 500 ROC analyses is 98.5%, indicating that the statistic

learning to discover and develop biomarker panel classifier has unlikely

been distorted by sample outliers.
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FIG. 8. Significant analysis of the urine peptide biomarker panel differentiating NEC medical

(M) and surgical (S) categories. (A) The discriminant probabilities of the NEC urine peptide

biomarker panel. The maximum estimated probability for each of the wrongly classified samples

is marked with an arrow. (B) Modified 2 � 2 contingency tables were used to calculate the

percentage of classification that agreed with clinical diagnosis by the urine peptide biomarker

panel. P-values were calculated with Fisher’s exact test. (C) ROC analysis of the NEC urine

peptide biomarker panel in discriminating NEC M and S classes. AUC: area under the curve.

The NEC urine peptide biomarker panel dataset was bootstrapped (resample with replacement)

500 times to create 500 datasets. The dotted curves is the vertical average of the 500 boot-

strapping ROC curves and the boxes and whiskers plot the vertical spread around the average.

(D) Distribution of the standardized ROC AUC values of the 500 falsely discovered panels.

Examining all the 500 falsely discovered biomarker panel ROC AUC values, there are only 12

falsely discovered panels that have ROC AUC values greater than that of the original urine

biomarker panel (represented by the red vertical line).
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Since the 13 peptide NEC biomarker panel was selected from the �10,000

unique peak features, we set to address the biomarker panels’ multiple

hypothesis testing problem. In order to estimate the false discovery rate

(FDR) in concurrent statistical tests of peptide panels, of the same size as

our biomarker panel, the class labels of our training dataset samples were

permutated 500 times such that each time every sample would be randomly

assigned a new class label (NEC M or S). For each of the 500 simulated

‘‘training’’ sets, NSC algorithm was applied to rank all the peak features

upon their discriminating the binary classes. The top 13 peak features were

then designated as the ‘‘panel’’ for LDA analysis. ROC analysis subsequently

was used to calculate the AUC for this ‘‘falsely discovered panel.’’ The AUC

values of the 500 falsely discovered panels were standardized, and the density

distribution was plotted in Fig. 8D. Examining all the 500 AUC values, there

are only 12 falsely discovered panels that have AUC values greater than

98.5% (found for the original 13-peptide biomarker panel biomarker). This

method estimates significance measure and compute the targeted biomarker

panel’s FDR. Therefore, the FDR of our NEC peptide biomarker panel is

estimated as 2.4%, supporting the notion that the discovery of our peptide

biomarker panel is unlikely to be the outcome of chance.

9. Exploration of Urine Peptide Biomarkers as Predictors
of Drug Response

One rationale for our focus on urine is our long-term intent to use urine

biomarkers for detection of (subclinical) disease activity and to predict drug

responses; such tests would be feasible for frequent determination, especially

in children. SJIA is a chronic inflammatory disease of childhood character-

ized by a combination of systemic features and arthritis [48, 49]. In published

reports of clinical observations, a subset of SJIA patients respond to thera-

pies that are effective in polyarticular JIA/RA, for example, methotrexate

and TNFa-inhibitors [50, 51], and only �50% of subjects are persistent

responders to IL-1 inhibition [52, 53]. To test the hypothesis that urine

peptide biomarkers can predict drug (EnbrelÒ—TNF inhibition; Ana-

kinraÒ—IL-1 inhibition) response, we carried out a pilot study including

unsupervised clustering analysis (Fig. 9) using pretreatment urine peptide

profiles (5 Enbrel CR-‘‘red,’’ 5 Enbrel PR-‘‘green,’’ and 3 Anakinra CR-

‘‘blue’’; CR ¼ complete responder; PR ¼ partial responder). When compar-

ing pretreatment urine peptide profiles from subjects with CR and PR to

TNF inhibition, there are essentially three groups of peptides: Group A and
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C peptides are abundant in patients later found to be only partially respon-

sive to TNF blockade; Group B peptides are abundant in patients found to

respond to TNF blockade. Interestingly, the urine samples from CRs to IL-1

blockade have both common and discriminative profiles with CRs to TNF

blockade, such that CRs to IL-1 to blockade form a distinctive class rather

than clustering with PRs to anti-TNF. Careful examination of the heatmap

revealed that the asterisked sample has a unique urine profile, where its group

B and C peptide profiles are similar to samples from PRs to TNF blockade.

These preliminary results demonstrate that several different patterns exist in

pretreatment urine peptide profiles, which implies that there may be mecha-

nistically distinct subgroups within SJIA patients. The number of profiled

samples in the pilot study is small; however, the suggestion is that these

profiles may predict the response to treatment with anti-TNF or IL-1

CRPR CR

Enbrel Anakinra

A

B

C

Row Z-score
–4–2 0 2 4

Color key

10 8 9 7 6 13 12 11 1 2 3 4 5

FIG. 9. Unsupervised analysis of the pretreatment urine peptidome profiles revealing urine

peptide abundance patterns indicative of SJIA patient drug response. Enbrel CR-‘‘red,’’ n ¼ 5;

Enbrel PR-‘‘green,’’ n ¼ 5; Anakinra CR-‘‘blue,’’ n ¼ 3; CR: complete responder; PR, partial

responder.
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inhibition. Future prospective studies with more study subjects will test the

robustness of urine as a source of drug response biomarkers in SJIA and also

is likely to provide new insights into the pathogenesis of this disease.

10. Urine Peptidome Proteolytic Degradation Patterns
Reflecting Pathophysiology

Our previous integrated analysis [28] of the urine peptidome and the

biopsy transcriptome in graft rejection that uncovers that overlapping key

gene and peptide pathways can be jointly dysregulated in AR. Disease-

specific alterations of gene transcription in the tissue (by array and Q-PCR)

and a change in the balance of proteolytic and antiproteolytic activities in

urine appear to imply important mechanisms resulting in an altered pattern

of a specific panel of urinary peptides in AR. For both systemic and renal

diseases, we hypothesize, as diagrammed in Fig. 10, that urine peptide

biomarkers are the surrogates of the pathophysiological dysfunctions in

signaling, proteolytic and antiproteolytic pathways. The peptide biomarkers

can be the derivatives of plasma proteins, disease specific shedding from

other organs, and renal specific proteins, and are generated during the

proteolysis that occurs in either circulation during systemic diseases or

dysfunctional kidneys, and then trimmed down by exoproteases into lad-

der-like clusters.

In conclusion, urine peptidomic profilings can yield urine peptide biomar-

kers discriminating both systemic and renal dysfunctions. However, chal-

lenges remain to transform the urine peptide biomarkers obtained at the

discovery phase into practical clinical utility. Due to the short length of

the urine peptides (900–4000 Da), to develop antibodies for each peptide

of the biomarker panel may not be feasible. Quantitative mass spectrometry-

based approach, that is MRM [33, 34], is an obvious alternative, however,

not widely adopted in clinics. With robust experimental design, future

prospective studies, either by antibody-based or quantitative mass spectrom-

etry-based approach, are needed to validate the urine peptide biomarkers

currently out of the discovery phase in order to optimize them into practical

clinical utility for disease diagnosis and prognosis. The integrative analyses

of peptidomics, genomics, and clinical information are critical for the under-

standing of not only mechanisms by which these urine peptide biomarkers

are generated but also the pathophysiology of the diseases. In this regard,

noninvasive easy to sample urine peptide biomarkers have the potential to

greatly advance current diagnostics and therapeutics in both systemic and

renal diseases.
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FIG. 10. Urine peptide biomarkers reflect the pathophysiological dysfunctions in signaling, proteolytic and antiproteolytic pathways in systemic or

renal diseases. The peptide biomarkers can be the derivatives of plasma proteins, disease specific shedding from other organs, and renal specific

proteins, and are generated during the proteolysis that occurs in either circulation during systemic diseases or dysfunctional kidneys, and then trimmed

down by exoproteases into ladder-like clusters.
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