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Abstract 

Motivation Ovarian cancer (OC) is a highly lethal gynecological malignancy. Extensive research has shown that OC 
cells undergo significant metabolic alterations during tumorigenesis. In this study, we aim to leverage these meta-
bolic changes as potential biomarkers for assessing ovarian cancer.

Methods A functional module-based approach was utilized to identify key gene expression pathways that distin-
guish different stages of ovarian cancer (OC) within a tissue biopsy cohort. This cohort consisted of control samples 
(n = 79), stage I/II samples (n = 280), and stage III/IV samples (n = 1016). To further explore these altered molecular path-
ways, minimal spanning tree (MST) analysis was applied, leading to the formulation of metabolic biomarker hypoth-
eses for OC liquid biopsy. To validate, a multiple reaction monitoring (MRM) based quantitative LCMS/MS method 
was developed. This method allowed for the precise quantification of targeted metabolite biomarkers using an OC 
blood cohort comprising control samples (n = 464), benign samples (n = 3), and OC samples (n = 13).

Results Eleven functional modules were identified as significant differentiators (false discovery rate, FDR < 0.05) 
between normal and early-stage, or early-stage and late-stage ovarian cancer (OC) tumor tissues. MST analysis 
revealed that the metabolic L-arginine/nitric oxide (L-ARG/NO) pathway was reprogrammed, and the modules related 
to "DNA replication" and "DNA repair and recombination" served as anchor modules connecting the other nine 
modules. Based on this analysis, symmetric dimethylarginine (SDMA) and arginine were proposed as potential liquid 
biopsy biomarkers for OC assessment. Our quantitative LCMS/MS analysis on our OC blood cohort provided direct 
evidence supporting the use of the SDMA-to-arginine ratio as a liquid biopsy panel to distinguish between normal 
and OC samples, with an area under the ROC curve (AUC) of 98.3%.
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Conclusion Our comprehensive analysis of tissue genomics and blood quantitative LC/MSMS metabolic data 
shed light on the metabolic reprogramming underlying OC pathophysiology. These findings offer new insights 
into the potential diagnostic utility of the SDMA-to-arginine ratio for OC assessment. Further validation studies using 
adequately powered OC cohorts are warranted to fully establish the clinical effectiveness of this diagnostic test.

Keywords Arginase (ARG), Nitric oxide synthase (NOS), Dimethylarginine dimethylaminohydrolase (DDAH), Protein 
arginine methyltransferases (PRMT), Asymmetric dimethylarginine (ADMA), Symmetric dimethylarginine (SDMA), 
Dimethylamine (DMA), Metabolic reprogramming, Ovarian cancer (OC), L-arginine/nictric oxide (L-ARG/NO)

Introduction
Ovarian cancer (OC) accounting for over 21,410 new 
cases and around 13,770 deaths in the US in 2021 [1] is 
the leading cause of deaths among woman cancers and 
has the poorest prognosis among gynecological malig-
nancies. The high OC mortality rate is related to the fact 
that approximately three fourths of women have stage III 
or IV disease at diagnosis. Because of the absence of dis-
tinct early symptoms, it is difficult to diagnose asympto-
matic localized-stage early cancer when the tumor is still 
confined to the ovary and potentially curable by debulk-
ing surgery and chemotherapy [2].

The current most widely used screening tool is the 
combination of the cancer antigen 125 (CA125) blood 
test and transvaginal ultrasonography (TVUS). However, 
neither multimodal screening (MMS) nor transvagi-
nal ultrasound screening approaches have significantly 
reduced deaths from ovarian cancer [3]. HE4 was by the 
U.S. Food and Drug Administration (FDA) as a monitor-
ing method for ovarian cancer patient management [4]. 
The five-year ovarian cancer survival rate has not been 
improved over the past three decades [5]. Clearly, from 
the molecular diagnostics perspective, identification of 
novel biomarkers to allow early detection of new onset 
disease, and routine surveillance of minimal residual dis-
ease (MRD) from which some patients experience recur-
rent disease after a curative-intent treatment, should be 
essential to achieve better outcomes in OC patients.

The last decade has witnessed increasingly rapid 
advances in multiple omics technologies [6], including 
genomics, transcriptomics, proteomics, and metabo-
lomics. Multi-omics based deep molecular profiling has 
been widely applied to analyze tissue- and liquid-derived 
samples from OC patients. The integration of high 
dimensional datasets has increased our knowledge of the 
disease and improved our understanding of the molecular 
landscape of OC. Current work in elucidating relation-
ships between different stages or subtypes of cancer has 
largely been based on pre-existing knowledge of cancer 
associated genes. Quantitative network-based framework 
has been previously established to compare diseases by 
an integrated analysis of disease-related mRNA express 
data and molecular pathological modules [7]. Common 

or discriminant functional modules and processes can be 
identified to discover the disease-disease similarities or 
differences. Novel hypotheses for disease pathophysiol-
ogy can thus be proposed to understand the underlying 
biology of the observed disease correlations.

Although tumor tissue biopsy profiling has been the 
standard for evaluating molecular cancer features, it is 
invasive and difficult to obtain serially. Therefore, liquid 
biopsy has emerged as a promising approach with sev-
eral unique advantages for cancer diagnosis. First, it is 
minimally invasive and safe, avoiding the potential com-
plications caused by tissue biopsy. Second, it provides an 
opportunity to identify heterogeneous tumor-specific 
alterations that may be missed by tissue biopsy [8]. More 
importantly, liquid biopsy enables serial sampling over 
time, which provides important information for guiding 
clinical decisions. Still, the cancer field is short of sensi-
tive and specific blood biomarkers to aid diagnosis and 
clinical decision making or to serve as molecular targets 
for chemoprevention and treatment.

In this study, we set to use a tissue biopsy-based module 
analysis approach to identify aberrant cancer metabolic 
pathways and develop metabolite biomarker hypotheses 
for OC assessment. To translate cancer metabolic abnor-
malities into clinical diagnostics, a liquid biopsy based 
quantitative mass spectrometry method was developed 
to validate these metabolite biomarkers’ potential clinical 
utilities in OC care.

Materials and methods
Blood collection and ethical considerations: ensuring 
responsible practices in human research
The study of blood samples from ovarian subjects was 
conducted in accordance with ethical guidelines and 
approved by the Institutional Review Board of Beijing 
Shijitan Hospital, Capital Medical University. The study 
adhered to the principles outlined in the Declaration 
of Helsinki. All experimental procedures were carried 
out in compliance with the requirements of the Human 
Ethics Procedures and Guidelines set by the local gov-
ernment. Prior to participating in the study, written 
informed consent was obtained from all participants. 
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The plasma samples were collected at the time of diag-
nosis, prior to any treatment, and comprised 464 sam-
ples from individuals with normal conditions, 3 samples 
from patients with benign tumors, and 13 samples 
from OC patients (Table  1). To obtain serum samples, 
collected blood was allowed to clot at room tempera-
ture for 30  min. Subsequently, the samples underwent 
centrifugation at 3000 r/min for 5  min. After centrifu-
gation, all serum samples were divided into smaller ali-
quots and stored at a temperature of -80ºC until further 
use.

Research strategy and workflow: a comprehensive 
approach for investigating tissue and liquid biopsy 
biomarkers assessing ovarian cancer
Our study followed a systematic approach consist-
ing of six steps, as depicted in Fig.  1. Firstly, we col-
lected gene expression profiling datasets comprising 
both normal ovarian tissues and tissues from differ-
ent stages of ovarian cancer (Supplementary data 2 
Table  1). Secondly, we conducted functional module 
analysis to identify modules that exhibited significant 
differences between normal ovarian tissue and early-
stage ovarian cancer, as well as between early-stage 

and late-stage ovarian cancer tissues. Thirdly, we 
characterized the gene expression patterns of the tar-
geted module component genes, specifically focusing 
on their differentiation between normal ovarian tis-
sue and early-stage ovarian cancer, as well as between 
early-stage and late-stage ovarian cancer tissues. These 
two steps aided in the formulation of hypotheses 
regarding ovarian cancer biomarkers, which could be 
based on either the functional modules or the targeted 
module component genes.

Additionally, we explored the targeted functional 
modules, module component genes, and the associ-
ated substrate/product metabolites to propose the pos-
sibility of utilizing these metabolites as mechanism of 
action (MOA)-derived ovarian cancer biomarkers. This 
analysis further expanded our understanding of the 
potential underlying mechanisms of ovarian cancer.

In the fourth step, we developed quantitative LC–
MS/MS biomarker assays to validate the metabolite 
biomarker hypotheses in blood samples. Subsequently, 
in the fifth step, we validated the levels of these metab-
olite biomarkers in a pilot cohort of blood samples. 
Finally, in the sixth step, we developed a metabolite 

Table 1 Demographics of the pilot validation cohort
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panel that allowed for the detection and differentiation 
of various stages of ovarian cancer.

Identification and analysis of gene expression functional 
modules
Functional module analysis [7] as conducted to compare 
gene expression patterns between (1) normal ovarian tis-
sue and early-stage ovarian cancer, and (2) early-stage 
ovarian cancer and late-stage ovarian cancer. All genes 
were annotated to the KEGG metabolic pathways and 
our curated biological modules. Gene expression data-
sets were quantile normalized to ensure comparabil-
ity. To assess the statistical significance of differential 
gene expression, Mann–Whitney U test statistics were 
computed for each gene, comparing (A) normal ovar-
ian tissue versus stage I/II cancer, and (B) stage I/II 
cancer versus stage III/IV cancer. When comparing U 
test analysis results from different datasets, it was nec-
essary to adjust the U test statistic based on the sam-
ple sizes of the compared groups. Specifically, for gene 
i in case group (with a group size of n1) and control 
group (with a group size of n2) , the statistic [9] cor-
responding with the control group was computed as 
U2i = n1 · n2−U1i , where U1i represents the statistic 

corresponding to the case group. To perform significance 
analysis for both case and control groups, a derived gene 
score was computed as follows:

This gene score represented the significance of gene i 
in distinguishing between the two compared groups. Fur-
thermore, a functional module score [7] was calculated 
as the median of the "Gene Scores" of the component 
genes within each functional module. To evaluate the sig-
nificance of the functional module score, false discovery 
analysis [10, 11] was conducted. This involved permu-
tating samples within the gene expression matrices 100 
times to estimate the false discovery rate.

Gene expression correlation network analysis
To visually represent the significant functional mod-
ule component genes, a graph structure was employed. 
Each gene was depicted as a node within the graph. The 
correlation structure among these genes was extracted 
using a Minimum Spanning Tree (MST) approach. In 
the MST, the widths of the edges connecting the nodes 

Gene Scorei =
U1i − U2i

n1+ n2
=

2 · U1i − n1 · n2

n1+ n2

Fig. 1 Study workflow diagram. OC: ovarian cancer. Overall, our study employed a comprehensive approach involving gene expression profiling, 
functional module analysis, targeted gene characterization, metabolite biomarker validation, and the development of a metabolite panel. This 
methodology aimed to identify and validate potential biomarkers for different stages of ovarian cancer
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were determined based on the Spearman p value, rep-
resenting the correlation strength between the respec-
tive gene pairs. These edge widths were represented on 
a logarithmic scale, emphasizing the significance of the 
correlations.

By utilizing this graph-based representation, the inter-
connections and relationships between the significant 
functional module component genes could be visually 
interpreted. The width of the edges provided an indica-
tion of the strength of the correlations, allowing for a 
comprehensive understanding of the gene–gene interac-
tions within the module.

Optimized sample preparation for accurate metabolite 
quantification
For the extraction process, 10 μL of the calibrator, qual-
ity control (QC), or unknown sample was mixed with 
100 μL of 10% trichloroacetic acid (TCA) and 100 μL 
of the internal standard (IS) working solution contain-
ing 2.5  μM of 13C6-arginine and  D7-ADMA. To ensure 
thorough mixing, the extracts were vortexed for 30  s. 
Subsequently, the samples were centrifuged at 12,000Xg 
under 4 °C for 3 min. After centrifugation, 180 μL of the 
supernatant was carefully collected from each sample 
and transferred into an auto-sampler vial equipped with 
a micro-insert. The purpose of transferring the super-
natant into the auto-sampler vial was to prepare the 
samples for subsequent analysis using liquid chromatog-
raphy/mass spectrometry (LC/MS). This step allowed for 
the proper handling and introduction of the samples into 
the LC/MS system.

Quantitative LC/MS/MS analysis of targeted metabolites
The Dionex Ultimate 3000 UHPLC system utilized in the 
analysis comprised various components from Thermo 
Fisher, including a degasser, an RS binary pump, an RS 
auto-sampler, and an RS column compartment located 
in San Jose, CA. To interface with the UHPLC system, 
a TSQ Quantiva mass spectrometer equipped with an 
electrospray ionization source and a built-in Rheodyne 
switch valve from Thermo Fisher was employed. Data 
acquisition and chromatographic peak integration were 
carried out using the XCalibur 4.0 software package, also 
from Thermo Fisher.

After the sample preparation process, 10 μL of the pre-
pared sample was injected onto an ACE Excel SuperC18 
column (1.7 mm, 50 mm × 2.1 mm; MAC-MOD Analyti-
cal, Chadds, PA). The mobile phases consisted of water 
with 0.1% formic acid (A) and methanol with 0.1% formic 
acid (B). Chromatographic separation was achieved using 
a 2-min isocratic elution at a flow rate of 0.3  mL/min 
with 5% B. Initially, the LC eluent was directed to waste 
for the first minute, and subsequently switched back to 

the electrospray interface from 1.1 to 2.0  min, enabling 
the elution, ionization, and detection of the targeted ana-
lytes by the system. Throughout the analysis, the auto-
sampler and column oven temperatures were maintained 
at 4 °C and 30 °C, respectively.

Operating in a multiple reaction monitoring (MRM) 
mode, the mass spectrometer acquired data from the 
LC eluent. The MRM transitions for the targeted ana-
lytes were individually optimized by infusing 2.5  mM 
of commercial standards at a rate of 10  mL/min into 
the mass spectrometer in the presence of 0.5% formic 
acid. The optimized MRM transitions can be found in 
Table 2A, provided for both the individual analytes and 
internal standards. The Q1 and Q3 resolutions were set 
at 0.7 Da, and the cycle time was set at 0.5 s. Further-
more, the source parameters were optimized by mixing 
5% B LC flow at 0.3  mL/min with a standard cocktail 
of 2.5 mM via a syringe pump infusion and a tee con-
nector. The spray voltage was optimized at 3500  V, 
while the optimal gas flows for Sheath Gas, Aux Gas, 
and Sweep Gas were determined to be 20, 5, and 0 Arb, 
respectively. The ion transfer tube and vaporizer tem-
peratures were also optimized at 300  °C and 175  °C, 
respectively. The quantitation of the targeted analytes 
was carried out using a systematic approach. Initially, 
the chromatographic peak areas corresponding to the 
quantifier ions of the targeted analytes were integrated 
for all samples in the extracted ion chromatograms 
(EICs). Subsequently, the integrated peak areas were 
subjected to manual inspection. The area under the 
curve (AUC) for each analyte was then normalized by 
dividing it with the AUC of the corresponding inter-
nal standard (IS). Following the normalization step, 
the IS-normalized peak area ratios obtained from the 
calibrator samples were plotted against their respective 
concentrations. This process allowed the establishment 
of calibration curves based on six concentration levels. 
These calibration curves served as a reference to deter-
mine the concentrations of the targeted analytes in sub-
sequent samples.

Quantification of the targeted analytes involved 
employing linear regression fitting with a weighting fac-
tor of 1/x to construct the calibration curves. Subse-
quently, an acceptance cutoff was implemented to ensure 
the calibration quality, requiring the square of the corre-
lation coefficient (r2) to be greater than 0.99. This strin-
gent criterion ensured the reliability and accuracy of the 
calibration curves.

Following the establishment of the calibration curves, 
the IS-normalized peak area ratios were applied to these 
curves. By utilizing the calibration curves, absolute con-
centrations of the targeted analytes in both pooled and 
unknown serum samples were determined. This step 
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allowed for the accurate quantification of the analytes 
based on their respective peak area ratios and the calibra-
tion curves generated. Overall, this approach provided a 
robust and validated method for obtaining precise and 
reliable absolute concentrations of the targeted analytes 
in the serum samples, facilitating accurate data analysis 
and interpretation in the study.

A pooled serum sample obtained from healthy vol-
unteer subjects was utilized to determine the mean and 
standard deviations of endogenous concentrations for 
the targeted analytes through both intra- and inter-assay 
measurements. These measurements were crucial in 
establishing quality assurance criteria based on statistical 
principles.

To ensure batch acceptance, a specific procedure was 
followed. Pooled serum samples, comprising 10% of the 
unknown samples, were prepared and evenly distributed 
throughout the batch for injection. For batch acceptance, 
it was required that the imprecision and inaccuracy of 
the measurements obtained from the pooled serum sam-
ples be less than 15%. Additionally, mean response ratios 
of quantifier to qualifier ions were determined using 

commercial standards for each analyte. A criterion was 
set that individual serum samples within the batch should 
not deviate more than 15% from the mean response ratios 
in order to qualify. This approach, employing statistical 
criteria and quality assurance measures, allowed for the 
accurate characterization and qualification of individual 
serum samples within the batch, thereby ensuring the 
reliability and validity of the results.

Development and validation of quantitative LC–MS/MS 
assays for L‑arginine SDMA and ADMA
Aberrant metabolism is a prominent characteristic of 
cancer, displaying remarkable flexibility that is specific 
to cancer type and context. Consequently, our research 
endeavors to utilize quantitative metabolic profiling to 
validate biomarker hypotheses and effectively translate 
metabolic abnormalities into clinical practice.

The calibration standards for creatinine and argi-
nine were procured from Sigma Aldrich, located in St. 
Louis, MO. As for the calibration standards for asym-
metric dimethyl arginine (ADMA) and symmetric 
dimethyl arginine (SDMA), they were obtained from 

Table 2 Presents the optimized quantitative mass spectrometry assays for the targeted analytes involved in the L-ARG/NO pathway, 
specifically arginine, SDMA, and ADMA. The table encompasses several key aspects of the assays as follows: (A) SRM Transitions: This 
section outlines the selected reaction monitoring (SRM) transitions for each analyte, providing the specific mass-to-charge ratio 
(m/z) values used for quantification. (B) LLOQ, Linear Range, and Linearity: Here, the table presents the lower limit of quantification 
(LLOQ), the linear range of concentrations, and the linearity of the calibration curves for the respective analytes. This information helps 
determine the sensitivity and dynamic range of the assays. (C) Intra- and Inter-Assay Precision and Accuracy: This section provides 
data on the precision and accuracy of the assays. It includes both intra-assay (within-run) precision and accuracy, as well as inter-assay 
(between-run) precision and accuracy. These values indicate the reliability and reproducibility of the measurements. (D) Extraction 
Recovery, Matrix Suppression, and Stability: The table also includes information on the extraction recovery, matrix suppression, and 
stability of the analytes. These parameters assess the efficiency of the sample extraction process, the impact of sample matrix on 
analyte detection, and the stability of the analytes during storage and analysis. By organizing these essential assay parameters here, it 
facilitates a comprehensive understanding of the optimized mass spectrometry assays for the targeted L-ARG/NO pathway analytes, 
aiding researchers in their analysis and interpretation of the data
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EMD Millipore, based in Burlington, MA. To ensure 
accurate measurements, stable isotope-labeled internal 
standards, specifically 13C6-L-arginine, and  D7-ADMA, 
were purchased from Cambridge Isotope Laboratory 
in Tewksbury, MA. HPLC grade water, methanol, and 
formic acid, which are essential for the analytical pro-
cess, were obtained from Fisher Scientific situated in 
Pittsburgh, PA. ACS grade trichloroacetic acid (TCA), 
an important reagent, was sourced from Sigma Aldrich. 
It is worth mentioning that all the materials were used 
directly without the need for additional purification.

To prepare the necessary solutions for the analysis, 
the following steps were taken. First, stock solutions 
of arginine and SDMA were prepared by dissolving the 
lyophilized powders in  ddH2O to achieve a concen-
tration of 10.0  mM. Next, a set of six-level calibrator 
working solutions was created by serially diluting the 
stock solutions with  ddH2O. This resulted in concen-
trations of 0.20, 0.40, 1.00, 2.00, 5.00, and 10.0 µM for 
both ADMA and SDMA, and concentrations of 4.00, 
8.00, 20.0, 40.0, 1.00 × 102, and 2.00 ×  102 µM for argi-
nine. Similarly, a set of four-level quality control (QC) 
working solutions was prepared by serial dilutions of 
the stock solutions with  ddH2O. This yielded concen-
trations of 0.20, 0.50, 2.00, and 8.00 µM for SDMA, and 
concentrations of 4.00, 10.00, 40.0, and 1.60 ×  102  µM 
for arginine. Additionally, a system suitability working 
solution was prepared by serial dilutions of the stock 
solutions with  ddH2O. This resulted in a concentration 
of 0.33 µM for SDMA and 6.68 µM for arginine. Mov-
ing on to the internal standards, the stock solutions of 
13C6-arginine, and  D7-ADMA were prepared by dis-
solving the lyophilized powders in  ddH2O to achieve a 
concentration of 10.0  mM. The internal standard (IS) 
working solution was then prepared by serial dilutions 
of the stock solutions with methanol, resulting in a con-
centration of 2.50  µM for each analyte. For the TCA 
solution, 50.0  g of TCA powder was weighed and dis-
solved in 22.7 mL of ddH2O to obtain a concentration 
of 100% (w/v) in the stock solution. The working solu-
tion of TCA was prepared by diluting the stock solution 
with ddH2O to achieve a concentration of 10% (w/v). 
All the prepared solutions were stored at 4  °C prior to 
their intended use in the analysis.

Table  2A presents the optimized multiple reaction 
monitoring (MRM) transitions for individual analytes 
and internal standards (ISs), encompassing both quanti-
fier and qualifier transitions. To achieve optimal perfor-
mance, Q1 and Q3 resolutions were set at 0.7 Da, while 
the cycle time was established at 0.5 s. Additionally, colli-
sion energy and RF lens settings for each analyte and ISs 
are provided for reference.

In Table 2B, the lower limit of quantitation (LLOQ) and 
linear range for each analyte are outlined. The finalized 
LLOQs were determined to be 4.00 µM for arginine and 
0.20 µM for ADMA and SDMA. Importantly, all analytes 
exhibited excellent linearity, as evidenced by R2 values 
surpassing 0.99.

To evaluate precision and accuracy, both intra- and 
inter-assay measurements were performed. This involved 
analyzing quality control (QC) samples, prepared in a 
surrogate matrix, at four distinct concentrations: LLOQ, 
Low, Medium, and High. Each sample underwent analy-
sis in six replicates across four independent runs. The 
results, presented in Table  2C, indicate that the coef-
ficient of variation (CV%) for intra-assay measurements 
remained below 5.74%, while the percent error (PE%) was 
below 5.82%. Similarly, for inter-assay measurements, 
the CV% and PE% values were below 8.85% and 8.60%, 
respectively.

These meticulous assessments of precision and accu-
racy ensure the reliability and reproducibility of our 
analytical methodology when quantifying the targeted 
analytes. By adhering to stringent quality control meas-
ures, we establish the robustness of our results, further 
bolstering their potential applicability in clinical settings.

The evaluation of extraction recovery, which quanti-
fies the percentage of the known analyte amount retained 
throughout the sample extraction and processing steps 
of the method, was conducted. Table  2D presents the 
results, revealing that the percent recoveries for all ana-
lytes at various concentrations exceeded 89.4%. This 
indicates minimal loss of analytes during the sample 
extraction and processing steps, ensuring the integrity of 
the measured concentrations.

Matrix effect and stability assessments were also per-
formed. Table  2D demonstrates the percent signal sup-
pressions, which ranged from 25 to 52% among different 
analytes. However, it is important to note that these sup-
pressions remained highly consistent across replicates 
at different concentrations. This consistency strength-
ens the reliability and reproducibility of our analytical 
approach.

Regarding stability, the percent stabilities of all analytes 
were above 90% under various temperature conditions, 
including 4  °C and room temperature. This finding sug-
gests that the analytes exhibit robust stability under dif-
ferent storage conditions, reinforcing the suitability of 
our method for sample storage and subsequent analysis.

By meticulously evaluating extraction recovery, matrix 
effect, and stability, we ensure the accuracy and reliability 
of our quantitative mass spectrometry approach. These 
assessments provide valuable insights into the perfor-
mance characteristics of the method, demonstrating its 
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effectiveness in accurately measuring the targeted ana-
lytes while minimizing potential interferences.

In the initial stages of mass spectrometric (MS) method 
development, the optimization of selected reaction mon-
itoring (SRM) transitions was carried out for the targeted 
analytes of interest. This involved individually infusing 
corresponding standards and internal standards (ISs) 
into the MS system. The MS/MS fragmentation spec-
tra depicting this optimization process are presented in 
Fig. 2 (A: L-ARG, B: SDMA, C: ADMA).

During optimization, the signal counts obtained from 
different product ions were compared. The two most 
intense product ions were selected as quantifier and 
qualifier ions, respectively. Their optimal precursor 
m/z, product m/z, collision energy (CE), and radio fre-
quency (RF) lens values were determined based on the 
prior optimization results. Additionally, considering the 
structural similarity between ADMA and SDMA, we 
conducted a parallel comparison of their fragmentation 
profiles. We identified signature fragments at 46.17 and 
172.13  m/z for ADMA and SDMA, respectively, while 
other abundant fragments were commonly present in the 
fragmentation spectra of both configurational isomers. 
Consequently, the fragments at 46.17 and 172.13  m/z 
were chosen as quantifier ions for ADMA and SDMA, 

respectively. Since there were no secondary signature 
fragments and the quantifier ions demonstrated robust-
ness in previous studies, qualifier ions were not selected 
for both ADMA and SDMA.

Subsequently, the cycle time was optimized based on 
the chromatographic peak widths of individual analytes 
and the total number of transitions. The candidate tran-
sitions were then evaluated against blank and pooled 
serum samples to assess their sensitivities and specifici-
ties, both with and without potential matrix interfer-
ences. The selected transitions exhibited satisfactory 
performance using the optimized cycle time.

The linearity of the calibration curve, determined by 
the coefficient of determination (r2) from linear regres-
sion fitting, was assessed for each analyte using a 6-level 
calibration. Figure  2B displays the calibration curves, 
demonstrating an r2 greater than 0.99 for L-ARG, 
ADMA, and SDMA. This confirms the excellent linearity 
of the calibration curves for these analytes.

Through the process of SRM transition optimization 
and calibration curve determination, we have successfully 
established robust and linear MS assays for the targeted 
analytes L-ARG, ADMA, and SDMA. These optimized 
methods provide reliable and accurate quantification of 
the analytes of interest.

Fig. 2 LC MS/MS Analysis of Targeted L-ARG/NO Pathway Analytes: Arginine, SDMA, and ADMA (A) LC MS/MS Fragmentation Spectra: The 
fragmentation spectra obtained through LC MS/MS analysis for the targeted analytes, namely arginine, SDMA, and ADMA, are presented. 
B Calibration Curves for the LC MS/MS Assays: The calibration curves generated for the LC MS/MS assays are shown. These curves depict 
the relationship between the concentration of each analyte and its corresponding peak area response. By plotting a series of known concentrations 
and their respective peak areas, the curves enable accurate quantification of the analytes in unknown samples based on their peak area values
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Results
Comprehensive analysis of tissue gene expression 
in ovarian cancer: insights from diverse datasets 
and functional modules
In this study, we utilized tissue gene expression datasets 
from GEPIA2 [12] and GENT2 [13] databases, encom-
passing normal, benign, and early/late ovarian cancer 
samples. A total of 18 gene expression profiling datasets 
of ovarian cancer tissues were compiled, comprising 71 
normal ovary, 8 benign, 280 early stage (stage I and II), 
and 1016 late stage (stage III and IV) ovarian cancer tis-
sue samples. Through meticulous analysis, we identified 
11 significant (FDR < 0.05) functional modules that dis-
tinguish normal from stage I/II or stage I/II from III/IV 
ovarian cancer (Fig. 3). These functional modules encom-
pass key biological processes such as sphingolipid metab-
olism, histidine metabolism, phenylalanine, tyrosine and 
tryptophan biosynthesis, ribosome biogenesis in eukary-
otes, base excision repair, homologous recombination, 
non-homologous end-joining, signaling pathways regu-
lating pluripotency of stem cells, DNA replication, DNA 
repair and recombination, and L-ARG/NO pathway.

The significance of the L‑ARG/NO pathway in ovarian 
cancer: a comprehensive analysis
Our analysis of tissue gene expression datasets has 
revealed intriguing findings regarding the L-ARG/NO 
pathway in ovarian cancer. Among the 11 most discrimi-
nant functional modules identified during the false dis-
covery functional module analyses (Supplementary data 
1), the L-ARG/NO pathway stood out prominently. This 

observation was made when comparing normal tissue 
to early-stage ovarian cancer, as well as when comparing 
early-stage to late-stage ovarian cancer (Fig. 3).

To further investigate the relationship of the L-ARG/
NO pathway with other functional modules, we per-
formed a module minimum spanning tree analysis (Sup-
plementary data 2 Fig.  1). In the comparison of normal 
tissue versus stage I/II ovarian cancer, the L-ARG/NO 
pathway directly clustered with the "DNA replication" 
module. In the comparison of stage I/II versus stage III/
IV ovarian cancer, the L-ARG/NO pathway indirectly 
connected to the "DNA replication" module through the 
"Base excision repair" module.

The L-ARG/NO pathway comprises several genes 
involved in key biological processes. These include pro-
tein methyltransferases (PRMT1 and PRMT5), nitric 
oxide synthase (NOS), arginases (ARG1 and ARG2), and 
dimethylarginine dimethylaminohydrolases (DDAH1 
and DDAH2). Through the minimum spanning tree anal-
ysis (Fig. 4), we observed unique clustering patterns and 
gene expression profiles of these seven component genes. 
Notably, gene clusters of PRMT1/PRMT5 and DDAH1/
DDAH2/ARG2 persisted, while other gene tree relation-
ships and expression significances differed between the 
two comparisons: normal tissue versus stage I/II ovarian 
cancer (Fig. 5A) and stage I/II versus stage III/IV ovarian 
cancer (Fig. 5B).

To further validate our findings, we examined the 
expression patterns of the component genes using two 
individual gene expression datasets: GSE14407 [14] and 
GSE38666 [15, 16]. These datasets included normal tis-
sue samples as well as stage I/II ovarian cancer tissues. As 
depicted in Fig.  5, PRMT5, PRMT1, DDAH1, DDAH2, 
NOS2, ARG1, and ARG2 were all found to be up-regu-
lated in the stage I/II or stage III/IV ovarian cancer tis-
sues compared to normal tissues.

To conclude, our comprehensive analysis highlights the 
significance of the L-ARG/NO pathway in ovarian cancer.

L‑Arginine/nitric oxide pathway and associated substrate/
product metabolites
Summarized in Fig. 4, the seven L-ARG/NO module gene 
members code enzymes involved in the methyl group 
transfer, protein degradation, and arginine metabolism 
to obtain several biologically active substances includ-
ing NO, ornithine, asymmetric (ADMA) and symmetric 
(SDMA) dimethylarginines, and dimethylamines (DMA).

Dimethylarginines are the degradation products of 
proteins, methylated by protein methyltransferases 
(PRMTs). PRMT1 is responsible for the most of ADMA 
yield and PRMT5 is responsible for the release of SDMA. 
NO synthases and arginases metabolize arginine, a 

Fig. 3 Tissue gene expression functional module analysis. Panel A. 
False discovery analysis (FDR) revealed significant functional modules 
differentiating normal from stage I/II or I/II from III/IV ovarian cancer. 
The horizontal axis: module response score comparing normal 
versus stage I/II cancer. The vertical axis: module response score 
comparing stage I/II versus III/IV cancer. L-ARG/NO: L-arginine/nitric 
oxide pathway
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Fig. 4 L-arginine/nitric oxide module gene expression pattern organized in a correlation minimum spanning tree. L-ARG/NO component 
genes include protein methyltransferases (PRMT1 and PRMT5), nitric oxide synthase (NOS), arginases (ARG1 and ARG2), dimethylarginine 
dimethyl-aminohydrolases (DDAH1 and DDAH2). The edge length between the discriminant nodes is proportional to the univariate correlation 
between the two genes within the module. A Normal vs Stage I/II OC, B Stage I/II vs III/IV OC gene expression comparative analysis, the size 
and color of the discriminant nodes are proportional to the -log (p value) and fold of change respectively; C L-ARG/NO pathway key enzymes, 
enzyme substrates, and enzyme products

Fig. 5 L-ARG/NO pathway and its key pathway gene expression differentiation in ovarian cancer
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semi-essential amino acid, to obtain NO and ornithine. 
Our gene expression analysis (Figs. 4A/B and 5) showed 
significantly differentiated PRMT5 and ARG1 expression 
in ovarian cancers with more than two-fold of increase 
and p value < 0.001.

Quantitative LC–MS/MS assays reveal altered metabolite 
levels in ovarian cancer plasma
To investigate the metabolic changes associated with 
ovarian cancer (OC), we employed LC–MS/MS-based 
quantitation assays to measure the levels of asymmetric 
dimethylarginine (ADMA), symmetric dimethylarginine 
(SDMA), and arginine in plasma samples obtained from 
an OC patient cohort (Table  1, Supplementary data 2 
Table 1).

Our findings revealed significant differences in the 
plasma levels of SDMA and arginine between OC 
patients and individuals with normal or benign tumor 
conditions. As depicted in Fig.  6A, the plasma level of 
SDMA was significantly elevated (p value < 0.0001) in 
OC patients compared to both normal and benign tumor 
samples. Conversely, the level of arginine in OC sera was 
significantly decreased (p value < 0.0001). Interestingly, 
as key metabolites in the L-ARG/NO pathway, SDMA 
and arginine exhibited opposite changes in plasma lev-
els among OC patients, suggesting that their ratio could 
potentially serve as a biomarker for OC assessment.

To evaluate the diagnostic performance of the SDMA-
to-arginine ratio, we compared it to the individual 
metabolites. As shown in Fig.  6B/C, the statistical dif-
ferentiation achieved by the ratio outperformed that of 

SDMA or arginine alone in distinguishing OC samples 
from normal samples (ROC AUC: 0.983) or from com-
bined normal and benign tumor samples (ROC AUC: 
0.981). These results indicate that the SDMA-to-arginine 
ratio holds promise as a potential biomarker for OC 
detection and differentiation.

Discussion
We have described the identification of a biomarker 
ratio, specifically the L-ARG/NO module metabolite bio-
marker ratio, which promises the enabling of the liquid 
biopsy assessment of ovarian cancer. Our gene expres-
sion module analysis with a large cohort of ovarian 
cancer tissue biopsy samples led to the identification of 
functional modules that significantly differentiate nor-
mal tissue from stage I/II or stage I/II from III/IV ovarian 
cancer. Among the top 11 significant modules associ-
ated with ovarian cancer, the L-ARG/NO module stood 
out. Through the characterization of the reprogrammed 
metabolic L-ARG/NO pathway in ovarian cancer tissue, 
we hypothesized that the pathway metabolite SDMA and 
arginine could serve as potential liquid biopsy biomark-
ers for assessing ovarian cancer. To test this hypothesis, 
we developed a sensitive and specific quantitative mass 
spectrometric assay that allows for the parallel analysis of 
circulating SDMA and arginine. Analyzing a pilot cohort 
of blood samples from ovarian cancer patients, we dem-
onstrated the potential diagnostic utility of the SDMA-
to-arginine ratio as a liquid biopsy biomarker for ovarian 
cancer assessment.

Fig. 6 Quantitative analysis of the targeted L-ARG/NO pathway analytes: arginine, SDMA and ADMA. A Blood analyte abundance in normal, stage I, 
III, and IV samples. B SDMA/ARG ratio as a biomarker to classify different stage cancers from the normal controls
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One of the main strengths of our study lies in the use 
of a quantitative agnostic framework to compare differ-
ent stages of ovarian cancer. We integrated tumor tis-
sue mRNA expression data and biological functional 
module networks to identify 11 significant modules that 
differentiate normal tissue from early-stage ovarian can-
cer or early-stage from late-stage ovarian cancer. These 
modules consist of genes known to play roles in cancer 
biology or specifically in ovarian cancer pathophysiol-
ogy. We visually represented the interactions of these 11 
differentiating functional modules in a correlation mini-
mum spanning tree. By closely examining these mod-
ules, we found that "DNA replication" and "DNA repair 
and recombination" modules were central in connecting 
other functional modules in both normal versus early and 
early versus late comparisons. Hallmarks of cancer cells 
include uncontrolled cell proliferation, genome instabil-
ity, and mutations. Therefore, targeting DNA repair and 
replication stress has been proposed in the OC treat-
ment [17, 18]. Approximately half of high-grade serous 
epithelial ovarian cancers incur alterations in genes of 
homologous recombination (BRCA1, BRCA2, RAD51C, 
Fanconi anemia genes), and the rest incur alterations in 
other DNA repair pathways at high frequencies. These 
previous findings are in line with our identification of 
the following significant functional modules underlying 
OC: DNA replication, DNA repair and recombination, 
the base excision repair, homologous recombination, and 
non-homologous end-joining. Cancer stem cells (CSCs) 
were found to correlate to ovarian cancer, locating in 
patient ascites [19], the ovarian surface [20] and fallopian 
tube epithelium [21]. Our identification of the OC signifi-
cant module, “signaling pathways regulating pluripotency 
of stem cells”, is consistent with the notion that CSCs 
potentially underlie the biology of ovarian cancer growth 
and frequent relapse [22, 23]. Sphingolipids are multifac-
eted mediators in ovarian cancer [24], and the sphingo-
sine kinase 1-sphingosine 1-phosphate receptor 1 axis is 
altered in ovarian cancer in multiple ways and therefore 
represents an attractive therapeutic target. Recent tar-
geted metabolomics analyses [25, 26] concerning the role 
of amino acids in OC identified histidine metabolism fac-
tors as potential new OC biomarkers. Large-scale profil-
ing of metabolic dysregulation in ovarian cancer found 
aromatic amino acids (phenylalanine, tyrosine and tryp-
tophan) alterations, and such metabolic reprogramming 
may be important to achieve metabolic harmony in ovar-
ian cancer [27, 28]. Signaling pathways upstream of the 
module ribosome biogenesis [29], including the PI3K/
AKT/mTORC1 and RAS/MAPK signaling pathways 
and the c-MYC proto-oncogene “super” growth regula-
tory network, are aberrantly regulated and activated in 
ovarian cancer. Thus, developing therapeutics to target 

ribosome biogenesis has emerged as a novel approach 
against ovarian cancer.

The L-ARG/NO pathway emerged as one of the top 
functional modules associated with ovarian cancer in 
our study. Nitric oxide synthase 2 (NOS2), a biomarker 
of early cancer development, cancer progression, and 
patient survival, has been implicated in breast cancer, 
brain metastases, and ovarian cancer. Protein arginine 
methyltransferases (PRMTs), particularly PRMT5 and 
PRMT1 identified in our study, are overexpressed in vari-
ous cancers, including ovarian, lung, multiple myeloma, 
and breast tumors. Clinical trials are underway to evalu-
ate the effectiveness of PRMT5 inhibitors in treating dif-
ferent types of cancer. While no clinical trial of a PRMT5 
inhibitor for ovarian cancer has been initiated, several 
studies have demonstrated the inhibition of ovarian can-
cer cell growth and induction of apoptosis with PRMT5 
inhibition or siRNA knockdown.

The L-ARG/NO pathway metabolites have been pre-
viously identified as cancer biomarkers in various meta-
bolic profiling studies. For instance, lower levels of serum 
arginine and citrulline were found in colorectal cancer 
samples compared to control samples. The metabolic 
differentiation of arginine and citrulline in colorectal 
cancer tissues was associated with the overexpression of 
the arginine transporter gene CAT-1. Therefore, systemi-
cally deregulated metabolites of the L-ARG/NO pathway 
hold promise as predictors of adverse clinical events after 
curative tumor resection.

The L-arginine/nitric oxide (L-ARG/NO) pathway 
plays a critical role in ovarian cancer progression. This 
pathway involves the metabolism of L-arginine, an amino 
acid, by the enzyme nitric oxide synthase (NOS) to pro-
duce nitric oxide (NO). The dysregulated L-ARG/NO 
pathway led to alterations in the levels of L-ARG and NO 
in the tumor microenvironment, contributing to ovar-
ian cancer progression and aggressiveness. Nitric oxide 
is a signaling molecule that regulates various cellular 
processes, including cell growth, angiogenesis (forma-
tion of new blood vessels), promotion of the remodeling 
of the extracellular matrix and facilitation of the tumor 
cell invasion, immune responses, and its association with 
resistance to chemotherapy.

Metabolic reprogramming is a hallmark of malig-
nancy [30–33], and reprogrammed metabolic activities 
can be exploited to diagnose, monitor, and treat cancer. 
Based on our gene expression analyses of the L-ARG/
NO module and up-regulation of PRMT1/5/ARG1/2, we 
hypothesized that the pathogenesis and pathophysiol-
ogy of ovarian cancer might be associated with systemic 
and circulating changes in SDMA and L-ARG metabo-
lites. Particularly, we proposed that the up-regulated 
metabolic ratio of SDMA-to-L-ARG could serve as a 
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biomarker for ovarian cancer assessment. Our findings 
of these metabolite biomarkers, if validated in ovarian 
cancer cohorts, could provide valuable insights into the 
cause-specific mechanisms of cancer pathogenesis, pro-
gression and metastasis, response to therapy, and overall 
function.

While our functional module discovery analysis effec-
tively identified differentiated pathways and hypoth-
esized associated metabolites as potential biomarkers, 
the clinical translation and field application of these find-
ings rely on absolute quantitative liquid biopsy data [34, 
35]. To this end, we developed MRM/SID-MS assays for 
SDMA and arginine following FDA Bioanalytical Method 
Validation Guidance for Industry. This approach allows 
for the absolute quantification of analyte abundance in 
blood. Our blood cohort analysis demonstrated that the 
SDMA-to-arginine ratio biomarker promises to have the 
potential to effectively differentiate control samples from 
ovarian cancer samples.

Our study has several primary limitations that need to 
be addressed. Firstly, the small sample size of the pilot 
cohort used for blood test analysis and the limited sample 
sizes within each cancer stage subgroup can compromise 
the generalizability, accuracy, and clinical relevance of 
our conclusions. It is important to note that due to the 
low prevalence of ovarian cancer in the general popula-
tion, an effective screening strategy must exhibit high 
sensitivity for early-stage disease (> 75%) and very high 
specificity (99.6%) to minimize unnecessary exploratory 
operations. This requirement is particularly crucial for 
postmenopausal women over 50 years of age, who are at a 
significantly higher risk than younger women. To validate 
the diagnostic utility of our biomarkers derived from the 
small cohort, large cohorts are necessary to ensure high 
sensitivity and specificity. Future follow-up studies with 
adequately powered cohorts should be planned to pro-
spectively evaluate and validate the clinical utility of the 
SDMA-to-ARG ratio in early ovarian cancer detection, 
triage of pelvic mass patients for prophylactic interven-
tion, and liquid biopsy surveillance of minimal residual 
disease for relapse management. Secondly, we need to 
consider potential limitations related to our bioinfor-
matic or computational approaches. The choice of bioin-
formatic or computational algorithms employed for data 
analysis can significantly influence the results. It is impor-
tant to acknowledge that data preprocessing steps, such 
as normalization and imputation, can introduce biases or 
distortions in the analysis. Moreover, complex bioinfor-
matic models may be prone to overfitting the data, espe-
cially when dealing with small sample sizes. For example, 
limitations of our MST analysis include parameter selec-
tion, sensitivity to data preprocessing, and interpretation 
challenges. Therefore, It is important for the future follow 

up studies to consider alternative methods as well, such 
as hierarchical clustering, spectral clustering, k-means 
clustering, as well as community detection approaches 
like Louvain or modularity-based algorithms. Lastly, our 
study relies on quantitative metabolomic analysis, which 
necessitates the use of liquid chromatography-mass 
spectrometry (LC–MS) or LC–MS/MS. However, the 
implementation of LC–MS/MS as a diagnostic platform 
in the clinical setting poses numerous challenges. While 
LC–MS/MS offers high sensitivity, specificity, and the 
ability to quantify multiple analytes simultaneously, there 
are practical considerations that make it difficult for rou-
tine clinical diagnostics. These considerations include the 
requirement for specialized instrumentation and exper-
tise in mass spectrometry and chromatography, the need 
for trained personnel and quality control measures, chal-
lenges related to sample preparation and throughput, the 
necessity for standardization and calibration, potential 
interferences and matrix effects, the importance of clini-
cal validation and adherence to regulatory requirements, 
as well as cost and accessibility issues. Nonetheless, 
ongoing advancements in technology, standardization 
efforts, and increased recognition of the potential clini-
cal benefits are actively addressing these challenges and 
expanding the applications of LC–MS/MS in routine 
clinical practice.

The discovery of the biomarker ratio in our study high-
lights its potential as a valuable diagnostic tool for the 
sensitive and specific assessment of early-stage ovarian 
cancer. This is particularly significant considering the 
challenges associated with the late-stage presentation of 
ovarian cancer, often attributed to the disease’s anatomi-
cal location and the absence of noticeable symptoms in 
its early stages. By identifying alterations in the L-ARG/
NO pathway through our biomarker ratio, we can over-
come these challenges and enable early detection of the 
disease.

Moreover, our biomarker ratio holds promise in indi-
rectly detecting minimal residual disease (MRD), which 
is responsible for recurrent disease following curative 
treatment. MRD is not easily identified through stand-
ard clinical evaluations or radiological exams. By utilizing 
our biomarker ratio as a proxy for tumor-specific changes 
in the L-ARG/NO pathway, we can potentially identify 
the presence of MRD through a liquid biopsy approach. 
This comprehensive understanding of the disease patho-
genesis and the assessment of the risk of relapse would 
provide clinicians with valuable insights, facilitating pre-
cise interventions and treatment escalation when neces-
sary. Ultimately, these advancements could significantly 
improve ovarian cancer survival rates.

If our findings are validated with multi-center trial with 
sufficiently powered cohorts, the two blood metabolites 
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with exceptional diagnostic performance could be trans-
lated into a simple blood test. This would enable high-
throughput and highly accurate analysis, revolutionizing 
ovarian cancer care and diagnosis. The ease and reli-
ability of this blood test would offer significant benefits 
in terms of accessibility and efficiency, facilitating ovar-
ian cancer early detection and enhancing overall patient 
outcomes.
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