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Highlights
1) Many children undergo echocardiogram-based screening for valvular heart disease.
2) We built an Al-based view classification and mitral regurgitation detection model.
3) The model accurately identified view and mitral regurgitation of any severity.

4) With more research, automated pediatric valvular disease detection is feasible.

Background

Echocardiography-based screening for valvular disease in at-risk asymptomatic children can
result in early diagnosis. These screening programs, however, are resource intensive, and
may not be feasible in many resource-limited settings. Automated echocardiographic
diagnosis may enable more widespread echocardiographic screening, early diagnosis, and
improved outcomes. In this feasibility study, we sought to build a machine learning model

capable of identifying mitral regurgitation (MR) on echocardiogram.

Methods

Echocardiograms were labeled by clip for view and by frame for the presence of MR. The
labeled data were used to build two convolutional neural networks (CNNs) to perform the
stepwise tasks of classifying the clips 1) by view and 2) by the presence of any MR,
including physiologic, in parasternal long axis color Doppler views (PLAX-C). We
developed the view classification model using 66,330 frames and evaluated model

performance using a hold-out testing dataset with 45 echocardiograms (11,730 frames). We



developed the MR detection model using 938 frames and evaluated model performance using
a hold-out testing dataset with 42 echocardiograms (182 frames). Metrics to evaluate model
performance included accuracy, precision, recall, F1 score (average of precision and recall, 0
to 1 with 1 suggesting perfect precision and recall), and receiver-operating characteristic

analysis.

Results
For the PLAX-C view, the view classification CNN achieved an F1 score of 0.97. The MR
detection CNN achieved a testing accuracy of 0.86 and an area under the receiver operating

characteristic curve of 0.91.

Conclusions
A machine learning model is capable of discerning MR on transthoracic echocardiography.
This is an encouraging step toward machine learning-based diagnosis of valvular heart

disease on pediatric echocardiograms.
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Abbreviations

AR = aortic valve regurgitation



ARF = acute rheumatic fever

AUC = area under the receiver operating curve
CAM = class activation mapping

CNN = convolutional neural network

ECG = electrocardiogram

MR = mitral valve regurgitation

PLAX-C = parasternal long axis with color Doppler
RHD = rheumatic heart disease

ROC = Receiver operating characteristic

t-SNE = t-distributed stochastic neighbor embedding

WHF = World Heart Federation

Introduction

Serial echocardiography to screen for valvular heart disease is an important component of
routine care for several pediatric populations such as children with Marfan Syndrome, those
exposed to mediastinal radiation, and those living in regions endemic for rheumatic heart
disease (RHD). Early echocardiographic detection of pathologic mitral valve regurgitation
(MR) may have important monitoring and/or treatment implications. For example,
echocardiogram-based RHD screening is designed to detect latent disease (disease with
echocardiographic evidence but no clinical symptoms). Screening asymptomatic children in

low- and middle-income countries can result in early latent RHD diagnosis, potentially



providing opportunities for secondary prevention initiation and reduced morbidity and
mortality.!> The 2012 World Heart Federation (WHF) criteria are the gold standard for
echocardiographic RHD diagnosis,® but screening with these criteria is not always feasible
due to equipment costs and the complexity of the criteria for nonexpert scanners. Simplified
single-view screening protocols with handheld ultrasound reduce cost, can be performed
reliably by nonexpert scanners, and result in good sensitivity and specificity for RHD

detection.”!!

Task-shifting of echocardiography to non-physician health care workers has been shown to
increase access to screening,’> 1218 but still relies on significant expertise for interpretation.
Automated diagnosis may obviate the need for a local physician, enabling more widespread
screening. Several groups have demonstrated the feasibility of a cognitive machine-learning
approach for pattern recognition in echocardiographic evaluation.!* Martins et al published
their preliminary experience with machine learning for echocardiographic RHD diagnosis;
their 3D convolutional neural network achieved a diagnostic accuracy of 72.77%,%
suggesting that while the task is feasible, further research is needed to improve accuracy of

predictions.

The aim of the current study was to determine the feasibility of developing a fully automated,
sequential machine learning model capable of view classification and MR detection (any MR

severity). We hypothesize that a CNN will be capable of recognizing echocardiographic MR.



This manuscript describes our proof-of-concept model, the first step in developing a machine

learning system for detection of pediatric mitral valve disease.

Materials and methods

Human Subjects Research

A waiver of approval was obtained from the Stanford University and Seattle Children’s
Hospital Institutional Review Boards. This study was approved by the Malawi National

Health Sciences Research Committee.

Echocardiograms

All echocardiograms were performed by a pediatric cardiologist (AS) or a trained
ultrasonographer in Malawi, Africa, as part of a screening program to detect latent RHD.?
Asymptomatic children aged five to 16 years-old underwent school or community-based
screening from 2014 to 2015. All echocardiographic studies were obtained using a Philips
CX50 (Best, Holland) portable echocardiography machine with an S5-1 transducer probe. The
studies adhered to an abbreviated RHD screening protocol consisting of parasternal long-axis,
apical four-chamber, and apical five-chamber views with and without color Doppler.® If a
concern for RHD emerged during the study, additional parasternal long axis, apical four-
chamber, parasternal short-axis, and spectral Doppler clips were often obtained. Machine
settings were consistent with WHF recommendations for echocardiographic diagnosis of

RHD.® Echocardiograms that identified congenital heart disease were excluded. A total of



2,229 video clips and 66,330 still frames from 227 unique subject’s echocardiograms were

analyzed for model development.

Pipeline for the Automated Diagnosis of RHD

Our approach had two steps: 1) view classification, to identify parasternal long axis with
color Doppler (PLAX-C) views from inputted 10-frame samples, and 2) MR detection,
assessing for the presence of any MR in PLAX-C views (Figure 1) from inputted systolic
frames. Two CNN models were developed, inspired by DenseNet?” and ResNet?®, with

hyperparameter tuning.

Echocardiographic Data Preprocessing and Labeling

We used the Python (v.2.7) and GDCM library (v.2.8.0) to extract metadata from the
compressed DICOM echocardiogram data. Each clip was labeled by an investigator (LAE,
MI) for view. Echocardiogram clips were divided into 10-frame samples (frames 1-10, 11-20,
etc.) for the view classification CNN (10, 600, 800). Frame 1 standardly begins at the R wave
on ECG tracing, corresponding to isovolumic contraction, but the first frame of subsequent
samples did not correspond to a standard point in the cardiac cycle. All extraneous
information (heart rate, scale, etc.) was stripped from the data, such that each frame included
only the cropped 2-D, color Doppler, and/or spectral Doppler components. The final input
size for the view classification CNN model was (10, 486, 486). The majority of

echocardiograms included parasternal long axis, apical four-chamber, and apical five-



chamber views. There were many view iterations, depending on which structures the operator
focused on, rotation or tilt of the probe, and presence or absence of color and spectral
Doppler. We identified 10 unique view variations and divided the 10-frame samples into
training, validation, and testing datasets by echocardiogram to ensure that samples from the
same clip were not distributed amongst the groups.? The data distribution for presence of any
MR among different views is summarized in Table 1 (more detail can be found in
Supplemental Table 1). The training, validation, and testing datasets were divided by unique
subject, with a ratio of 0.6:0.2:0.2 (145:48:48 subjects). As particular echocardiographic
views were only obtained if RHD suspicion existed at the time, there was an imbalance of
views. To overcome the difficulty of imbalanced data distribution in the training dataset, we
utilized data augmentation techniques in the view categories with limited samples (color
Doppler apical four and five chamber views and 2D and color Doppler parasternal short axis
views) including image rotation, translation, and shear.?° For data augmentation, we used the
Keras (v.2.0.9) DataGenerator to resample the views mentioned above 5, 4, 3, 2, 20, and 1
time separately. Data augmentation techniques were not used in the validation and testing

datasets.

MR presence can be detected only in frames captured in certain echocardiographic views
with color Doppler and during systole in the cardiac cycle. For this feasibility study, the MR
detection model used inputted data comprised of single systolic frames in the PLAX-C view,

labeled individually for the presence of any MR, including physiologic. Systolic frames were



used for all labeled data (MR/No MR) to ensure otherwise similar data features. Therefore,
only systolic frames were input into the MR detection model for training and testing. MR+
frames were individually identified and labeled throughout the PLAX-C clips. Amongst MR+
frames, we compared the first 10 frames of the clip to identify frames in which MR was most
frequently detected. MR was most frequently identified in frame 4 followed by frame 5, thus
these two frames were selected from MR- PLAX-C clips for the MR- input. The image was
cropped to an input size was (300,300), focusing on the mitral valve region for MR detection.
To ensure equal distribution of MR severity within the dataset, we evaluated each
echocardiogram for the presence of MR in two views, a WHO-defined marker of more
significant MR. We divided the frames into training, validation, and testing datasets by the

presence of MR in two views (Supplemental Table 2).

Evaluation of the Convolutional Neural Network Models

To evaluate the performance of the two CNN models, several standard metrics were used as

described below.?!

Accuracy, precision, recall, and F1 score

Accuracy is the fraction of true predictions [accuracy= true predictions/ total predictions].
Precision, or positive predictive value, is the probability that a positive prediction is correct
[precision=true positive predictions/ total positive predictions]. Recall, or sensitivity, is the

probability that any given input generates the correct positive prediction [recall= true positive
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predictions/(true positive + false negative predictions)]. F1 score, also known as F1-measure
compute, is the harmonic average of precision and recall [F1 score= 2*(recall * precision)/
(recall + precision)]. F1 scores range from 0 to 1, with an F1 score of 1 suggesting perfect
precision and recall of the model. While precision and recall can be manipulated by changing
parameters in the model, hence introducing bias, the F1 score is generally regarded as a more
impartial metric. Comparison of F1 scores across models is problematic (i.e. there is no

standard cutoff for a “good” F1 score).

Confusion matrix
A confusion matrix allows for visualization of model performance by comparing actual (true

label) versus predicted class.

Receiver operating characteristic (ROC) curve
ROC curves were constructed by plotting the true positive rate against the false positive rate.

The area under the ROC curve (AUC) was used to measure the robustness of the model.

t-distributed stochastic neighbor embedding (t-SNE)

t-SNE is an unsupervised data dimension reduction method used to visualize high

dimensional data in a two- or three-dimensional coordinate system.*?

Class activation mapping (CAM)
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The CAM technique activates the regions of the input data that most importantly contributed

to the model’s final prediction.*?

Further methodology details are provided in the supplemental material.

Results

View Classification CNN Model

Figure 2a depicts the training curve for the view classification CNN. The model converged
and achieved a high level of accuracy. We computed the final test accuracy for the view
classification model as 0.98. The view classification CNN has an average testing F1 score of
0.97 across the ten views. The gap between the training and validation curves in the two plots
reflects generalization error. For the PLAX-C view, the F1 score reached 0.97, suggesting
near-perfect prediction (Table 2). With the exception of parasternal short axis color Doppler
views, which suffered from inadequate training data, the F1 scores of all other views were

above 0.96, suggesting excellent overall performance of the model.

t-SNE visualization (Figure 3a) depicts the view classification CNN’s grouping of data.
Overall, the model was able to separate the views well, excepting the parasternal short axis
color Doppler views, which the model struggled to differentiate from PLAX-C. Figure 3b

depicts the confusion matrix for view classification model performance.
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After the model was trained, we used the class activation mapping (CAM) technique to
visualize model learning (Figure 4).33 The strongest activation signal indicates the part of the
image relied on most heavily for the prediction output. The view classification CNN focuses

on structural differences between imaging views.

MR Detection CNN Model
The MR detection CNN model promisingly differentiated any MR from No MR in PLAX-C
views. Figure 2b depicts the training curve for the MR detection CNN. This model also

converged and achieved a high level of testing accuracy at 0.86 on 182 testing samples, with

the F1 score for MR equaling 0.90 and for No MR equaling 0.77 (Table 3).

The MR detection CNN’s performance during the training process is depicted in the ROC in
Figure 5. Our model achieved an AUC of 0.91, indicating a strong prediction ability. The
CAM technique was also utilized to understand the MR detection model’s learning process

(Figure 6). The MR detection CNN relies heavily on the color Doppler signal.

Discussion

We present a machine learning-based automated pipeline for assessment of MR in a single
echocardiographic view. This work represents the first step in the development of a model for
diagnosis of mitral valve disease in a pediatric population. While the diagnosis of any MR,

including physiologic, is not clinically useful, our model suggests the feasibility of a two-step
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workflow for machine learning in the echocardiographic diagnosis of pediatric mitral valve
disease. The models were developed using data from pediatric screening echocardiograms for
RHD, but the proposed approach may translate well to other valvopathies, such as in children

with Marfan’s Syndrome or post mediastinal radiation.

The system employs two CNNSs in series, the view classification CNN to identify PLAX-C
views and a binary MR detection CNN in the PLAX-C view. The deep learning method is
traditionally used as a black box; however, we favored two CNN models over a single-step
end-to-end learning method for ease of conceptualization by clinicians and to benefit from
cumulative model expertise. Both models were tested on individual hold-out testing datasets.
For the PLAX-C view, the view classification CNN achieved near-perfect prediction (F1
score 0.97). The MR detection CNN achieved a testing accuracy of 0.86 and an AUC of 0.91.
Our dataset consisted entirely of RHD screening echocardiograms obtained in the field,
suggesting a high level of accuracy despite image variability due to differences in

echocardiographic windows amongst subjects and technical variability amongst scanners.

Several groups have examined the potential of machine learning for echocardiographic view
classification. Gao et al. found a fused CNN using both spatial and temporal
echocardiographic information outperformed several well-known hand-crafted algorithms in
differentiating echocardiographic views.?* Our model achieved better view classification

performance using a more efficient network and investigated color Doppler views. Khamis et
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al. introduced an algorithm using Cuboid detection and supervised dictionary learning to
discriminate amongst apical echocardiographic views.?’ This method focused on recognition
of the mitral valve region in three similar apical views; our method included many more
views, both 2D and color Doppler, and did not focus on a single anatomic structure, allowing
for more broad views classification. Nascimento et al. performed automated view
classification on a set of RHD screening echocardiograms collected through the PROVAR
study in Brazil.3* Our model achieved better view classification performance for more views.
Gearhart et al used pediatric and young adult echocardiogram images to build a CNN to
identify 27 different views with overall model accuracy of 90.3%.%> While our test accuracy
was superior, the comprehensiveness of our CNN was intentionally more limited given our
goal of a multistep process for MR detection; we included fewer views, did not include
spectral Doppler views, and did not include children with structurally abnormal hearts. A few
groups have forayed into multistep models with view classification and automated pathology
diagnosis. Madani et al. built a CNN capable of view classification with view segmentation
and classification of left ventricular hypertrophy.?!-?? Zhang et al.’s multistep model includes
view classification, image segmentation, quantification of ventricular size and function, and
disease classification of hypertrophic cardiomyopathy, pulmonary arterial hypertension, and
amyloidosis.?? Kusunose et al. also investigated using CNN method to achieved five-view
echocardiographic data classification.>® Our work differs in that color Doppler views were

added, laying the foundation for automated MR diagnosis.
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In recent years, some progress has been made using machine learning for echocardiographic
assessment of MR severity 3’. Moghaddasi and Nourian used textural descriptors from
echocardiographic images obtained at three ECG-determined points in the cardiac cycle to
classify MR severity.’® Zhang et al also developed a CNN to grade MR using apical 4-
chamber color Doppler images with traced MR contours.** Our work differs from these
studies in several important ways. Our model was built with pediatric data and focuses on
MR identification rather than MR grading. Additionally, our machine learning pipeline
includes comprehensive view classification, such that our algorithm will sort through a
complete echocardiogram and select appropriate views before moving on to the MR detection

step.

At this time, the MR detection CNN is limited in that it has only been trained in the PLAX-C
view and does not differentiate MR severity. The presence of any MR is not useful, as trivial
to mild MR is a nonspecific finding and can be present in healthy children. While this study
was designed to test the feasibility of machine learning for echocardiographic MR detection,
our next step is to train the CNN to detect pathologic MR. Pathologic MR is usually due to
RHD in endemic populations and is the most common manifestation of RHD in children.$
Simplified RHD screening criteria consist of the length of the MR jet (>2cm’ or >1.5 cm?®)
and the presence of any AR. As we continue this project, we plan to detect a binary outcome
of pathologic MR or no/non-pathologic MR, experimenting with MR jet length > 1.5 cm®!!

and > 2 ¢cm.% Zulkhe et al.' and Diamantino et al.!! reported that screening protocols limited
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to PLAX-C views and one measurement, MR jet length, are sensitive and specific for RHD
diagnosis. The WHF differentiates pathologic MR from normal if seen in two views, so we

will trial single versus two-view protocols as we continue to build our model.

Our methodology could be replicated to detect other echocardiographic features of RHD,
such as AR, which has been used in addition to pathologic MR in simplified screening
protocols,” or morphological valve features. Nunes et al.** proposed the first risk
stratification score for RHD disease progression, which includes morphologic features of the
mitral and aortic valve for RHD identification and prediction of disease progression. While
incorporating morphologic features would increase model specificity, developing a training
data set with morphological components is not feasible at present, as the individual
morphological components lack sufficient inter-reviewer agreement to inform machine
learning assessment of morphology; this may necessitate modification of guidelines for
development of machine learning-based RHD algorithms that include 2D morphology.
Rather than focus on specific echocardiographic features of RHD, Martins et al used 2D and
color Doppler clips in numerous views from RHD+ (borderline and definite) and RHD-
children to build their RHD diagnosis model and found that a 3D CNN with aggregated
multiple clip input and random forest meta-classifier outperformed a 2D frame-based CNN,
presumably due to the added temporal data.>> However, 2D CNN has been successfully

utilized for MR classification as well as other cardiac disease processes.?!23-38
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Our approach has several additional limitations. The MR detection CNN shows higher
generalization error than the view classification model, likely attributable to: 1) smaller
training dataset size; 2) separability of features within the same view is more challenging
than amongst different views; and 3) we did not include the effect of the error accumulation
on precision, recall, or F1 score. Training data size is usually an important factor in the
machine learning application and was limited in both of our CNNs. As parasternal short axis
and spectral Doppler clips were not obtained in the RHD screening echocardiograms unless
there was an RHD concern, fewer of these views are represented in our training, test, and
validation sets, and those present introduce selection bias. Our model’s performance in
recognizing these views is predictably lower. As we are able to obtain and label more data,
we anticipate improvement in model performance. Alternatively, there are some advanced
techniques, such as a semi-supervised learning method, which could be explored.
Technically, MR detection is a more fine-grained classification task and proved more
challenging for the CNN than view classification. In addition, the view classification and MR
detection models are launched in serial to reach the diagnosis, and, thus, the view

classification model’s error could reduce the MR detection model’s performance.

An additional limitation to both models is that all echocardiograms were obtained in Malawi,
where, anecdotally, most children have good echocardiographic windows. Studies were
performed by a cardiologist and a sonographer, and it is unclear how our model would

perform with echocardiograms performed by additional and potentially less skilled operators.
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Furthermore, we do not have demographic or clinical information (e.g. age, body mass index,
etc.) to understand if our model performed better in any subset of the Malawi population. In
populations where obesity is prevalent, echocardiographic windows may be poor, and it is
unclear how our model will generalize to these populations. Final limitations center around
echocardiogram acquisition: 1) all clips were obtained with a Philips CX50 portable
ultrasound, so it is unclear how our model will perform with other portable and handheld
models, and 2) the scanner was actively interpreting the echocardiogram and obtained
additional, potentially optimized, clips if there was an RHD concern, possibly skewing the
quality of our positive data and potentially limiting the CNN’s ability to detect MR on

suboptimal clips.

Conclusions

We successfully built a machine learning model capable of view classification and MR
detection. The early success of our approach suggests that automated MR detection for
applications such as RHD screening is feasible. This study further demonstrates the potential
of machine learning-based models in echocardiographic diagnosis of cardiac disease.
Availability of data and materials: The datasets used and/or analyzed during the current

study are available from the corresponding author on reasonable request.
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Table 1. Data Distribution for MR Presence and Different Views

View Clip Distribution
MRT No MRf Total
Total 309 1920 2229
PLAX 0 429 429
PLAX-C 137 356 493
PSAX-AV 0 40 40
PSAX-AV-C 0 37 37
PSAX-MV 0 66 66
PSAX-MV-C 28 13 41
A4C 0 319 319
A4C-C 144 154 298
A5C 0 261 261
A5C-C 0 245 245

MR and No MR headings in this table reflect the overall presence or absence of any MR in

20

the clip. MR: mitral regurgitation;, PLAX: parasternal long axis; PLAX-C: parasternal long

axis with color Doppler; PSAX-AV: parasternal short axis at the level of the aortic valve;
PSAX-AV-C: parasternal short axis at the level of the aortic valve with color Doppler;
PSAX-MV: parasternal short axis at the level of the mitral valve; PSAX-MV-C: parasternal

short axis at the level of the mitral valve with color Doppler; A4C: apical four-chamber

view, A4C-C: apical four-chamber view with color Doppler box over the mitral valve; A5C:



apical five-chamber view (i.e. apical four-chamber view with anterior angulation); A5C-C:

apical five-chamber view with color

21



Table 2. Performance of the View Classification CNN on Testing Data

Testing
View Precision Recall Fl-score

sample
PLAX 1.00 1.00 1.00 200
PLAX-C 0.98 0.97 0.97 200
PSAX-AV 0.96 0.96 0.96 28
PSAX-AV-C 0.72 0.95 0.82 22
PSAX-MV 0.94 0.98 0.96 63
PSAX-MV-C 1.00 0.71 0.83 21
A4C 0.97 0.99 0.98 200
A4C-C 0.96 0.98 0.97 125
AsC 0.99 0.96 0.98 200
A5C-C 0.97 0.96 0.96 114

CNN.: convolutional neural network; PLAX: parasternal long axis; PLAX-C: parasternal
long axis with color Doppler; PSAX-AV: parasternal short axis at the level of the aortic
valve; PSAX-AV-C: parasternal short axis at the level of the aortic valve with color

Doppler; PSAX-MV: parasternal short axis at the level of the mitral valve; PSAX-MV-C:

22

parasternal short axis at the level of the mitral valve with color Doppler; A4C: apical four-

chamber view; A4C-C: apical four-chamber view with color Doppler box over the mitral

valve; A5C: apical five-chamber view (i.e. apical four-chamber view with anterior

angulation); A5C-C: apical five-chamber view with color Doppler box over the aortic valve.
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Table 3. Performance of MR Detection CNN model on testing data

Class Precision Recall F1-score Testing sample
MR 0.93 0.86 0.90 130
No-MR 0.71 0.85 0.77 52

MR: any mitral regurgitation
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Figure Legends
Figure 1. System construction pipeline. The system construction pipeline consisted of two
separate convolutional neural networks for two tasks, view classification and mitral valve

regurgitation (MR) detection.

Figure 2. Training and validation curves of the convolutional neural networks. The
training and validation curves for the view classification model (a) converge at
approximately 50 epochs (the number of passes of the training dataset the model has
completed). Fluctuation is noted in the validation curve, likely reflecting variation within a
single view amongst studies; this improves with increasing epochs, suggesting the model
learns generalizable knowledge to inform its prediction. The final F1 score for the view
classification model approached 1, suggesting near perfect precision and recall of the model.
The test accuracy for the mitral valve regurgitation detection model (b) was also strong. The
training curve and validation curves for this model converge after approximately 200 epochs.
The mitral valve regurgitation detection model lacks sufficient training at this time to
overcome generalization error and narrow the gap between training and validation curves and

reduce fluctuation in the validation curve.

Figure 3. Visualization of the successful prediction of the view classification model. t-
distributed stochastic neighbor embedding visualization (a) and confusion matrix (b). In the t-
SNE plot (a), each point represents the data obtained from a 10-frame sample, and the distance

between points reflects how similar the model found the data. The point’s color reflects the true
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label, i.e. the true echocardiographic view. In the confusion matrix (), accuracy is represented
by the color scale displayed at the right of the matrix. A diagonal line from top left to bottom
right represents the correct prediction. The off-diagonal cells reflect wrong predictions; for
example, ASC-C was erroneously predicted to be A4C-C on five occasions. Overall, both
methods suggest the model was able to separate echocardiographic views well, the exception
being parasternal short axis color Doppler views, which the model struggled to differentiate
from parasternal long axis color Doppler views. Parasternal long axis with (PLAX-C) and
without (PLAX) color Doppler, parasternal short axis at the level of the aortic valve with
(PSAX-AV-C) and without (PSAX-AV) color Doppler and at the level of the mitral valve with
(PSAX-MV-C) and without (PSAX-MYV) color Doppler; apical four-chamber view without color
Doppler (44C) and with color Doppler over the mitral valve (A4C-C), and apical five-chamber

view without color Doppler (A5C) and with color Doppler over the aortic valve (A5C-C).

Figure 4. Class activation mapping technique for the view classification model. The
brightest activation signal indicates the part of the image relied on most heavily for the
prediction output. For example, the model is relying on mitral inflow in the PLAX-C frame
and on the presence of the 2D aortic root in the AS5C and A5SC-C frames; the ASC-C frame is
in diastole, and the model is not relying on color aortic outflow in this particular frame. In the
depicted PLAX frame, the model is focusing on something in the right ventricle. Parasternal
long axis with (PLAX-C) and without (PLAX) color Doppler; parasternal short axis at the level

of the aortic valve with (PSAX-AV-C) and without (PSAX-AV) color Doppler and at the level
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of the mitral valve with (PSAX-MV-C) and without (PSAX-MV) color Doppler; apical four-
chamber view without color Doppler (A4C) and with color Doppler over the mitral valve (44C-

C), and apical five-chamber view without color Doppler (A5C) and with color Doppler over

the aortic valve (A5C-C).

Figure 5. Receiver operating characteristic curve for the blind testing of the mitral
regurgitation detection model. The dashed line demonstrates chance. As the false positive
rate approaches 0, the true positive rate nears 0.5, suggesting a high positive predictive value.
The model achieved an area under the receiver operating curve of 0.91, also indicating a

strong prediction ability.

Figure 6. Class activation mapping technique for the mitral regurgitation model. The
brightest activation signals are the mitral regurgitation and aortic outflow color Doppler signals,

indicating the model focused most heavily on these features to make its prediction.
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