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ABSTRACT
Objectives  The aim of this study was to develop a 
single blood test that could determine gestational age 
and estimate the risk of preterm birth by measuring 
serum metabolites. We hypothesised that serial metabolic 
modelling of serum analytes throughout pregnancy could 
be used to describe fetal gestational age and project 
preterm birth with a high degree of precision.
Study design  A retrospective cohort study.
Setting  Two medical centres from the USA.
Participants  Thirty-six patients (20 full-term, 16 preterm) 
enrolled at Stanford University were used to develop 
gestational age and preterm birth risk algorithms, 22 
patients (9 full-term, 13 preterm) enrolled at the University 
of Alabama were used to validate the algorithms.
Outcome measures  Maternal blood was collected serially 
throughout pregnancy. Metabolic datasets were generated 
using mass spectrometry.
Results  A model to determine gestational age was 
developed (R2=0.98) and validated (R2=0.81). 66.7% of 
the estimates fell within ±1 week of ultrasound results 
during model validation. Significant disruptions from 
full-term pregnancy metabolic patterns were observed in 
preterm pregnancies (R2=−0.68). A separate algorithm 
to predict preterm birth was developed using a set of 10 
metabolic pathways that resulted in an area under the 
curve of 0.96 and 0.92, a sensitivity of 0.88 and 0.86, and 
a specificity of 0.96 and 0.92 during development and 
validation testing, respectively.
Conclusions  In this study, metabolic profiling was used to 
develop and test a model for determining gestational age 
during full-term pregnancy progression, and to determine 
risk of preterm birth. With additional patient validation 
studies, these algorithms may be used to identify at-risk 
pregnancies prompting alterations in clinical care, and to 
gain biological insights into the pathophysiology of preterm 
birth. Metabolic pathway-based pregnancy modelling is 
a novel modality for investigation and clinical application 
development.

INTRODUCTION
Gestational age (GA) dating is a core element 
of standard prenatal care.1–4 Prenatal 

ultrasound (US) is an established modality 
for estimating GA, monitoring fetal growth 
and screening for fetal anomalies.5 According 
to the policy statement of the Committee on 
Obstetric Practice, the American Institute 
of Ultrasound in Medicine and the Society 
for Maternal-Fetal Medicine, a pregnancy is 
considered optimally dated through a combi-
nation of last menstrual period (LMP) and an 
accurate US obtained prior to 22 0/7 weeks.6 
Accordingly, LMP is dependent on maternal 
recall and many pregnancies do not present 
for a first prenatal US evaluation until the 
second or third trimester. Thus, there is a 
need for a molecular method that would 
complement the potential shortcomings of 
LMP recall and US dating outside the first 
trimester. Moreover, it is possible that molec-
ular pregnancy dating will provide greater 
resolution to pregnancy risk then current 
information based on calendar dating (LMP) 
and anthropometrics (US). Although experi-
ence is accumulating with the use of second 

Strengths and limitations of this study

►► The insensitivity of the prediction model to gesta-
tional age (GA) window of sample collection increas-
es its flexibility and opportunity for potential clinical 
use.

►► This study is among the first to propose a pathway-
based computational methodology to estimate GA 
and predict preterm birth.

►► The overall cohort size is modest, and the distribu-
tion of sampling time is different between patients 
and cohorts.

►► It is a retrospective study, a larger prospective 
cohort study is necessary before applying the es-
timates and prediction to a broader population for 
clinical utility.
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and third trimester US for an estimation of risk of 
preterm birth (PTB),7–9 to date these measures have not 
been widely adopted, are subject to user experience and 
have reported variable performance characteristics. The 
availability and expertise of US in disadvantaged areas is 
limited.10 Therefore, there is a need to develop an alter-
native measure of fetal progression to estimate GA and 
pregnancy risk in a variety of settings and especially when 
US and LMP dates are unavailable or unreliable.

Compared with imaging methodologies, blood-based 
molecular testing may provide a more reproducible 
and precise modality in clinical applications for the 
frequent monitoring of health status and detection of 
early signs of disease. Genomic, gene expression, protein 
and metabolite profiles measured in human blood have 
been increasingly used for the determination of disease 
risk and to gain disease-specific pathophysiology insight. 
Attempts at estimating GA using molecular adaptations 
have included modelling of RNA, protein or immune cell 
changes, and most recently metabolites in maternal or 
newborn blood.11–17 Similarly, risk prediction of PTB in 
clinical settings is currently primarily based on maternal 
history. Biomarkers have been suggested from genetic 
and proteomic analyses, but less effort has been focused 
on understanding maternal metabolic signatures of 
pregnancy.18–24

In this study, we hypothesised that longitudinal meta-
bolic profiling of pregnancy reflects the temporal 
progression of fetal development with a high degree of 
precision. Moreover, we posited that if a normal preg-
nancy progression profile could be defined in metabolic 
terms, then aberrations from the normal profile may 
identify a pregnancy at risk for PTB. Our findings suggest 
that composite metabolic panel modelling may serve as 
a reproducible and precision approach to GA dating of 
pregnancy and prediction of PTB.

MATERIALS AND METHODS
Definition
In this study, a full-term pregnancy was defined as a 
pregnancy ending with a delivery at ≥37 weeks. PTB was 
defined by delivery at <35 weeks GA in order to make a 
complete separation from the full-term subjects.

Study design
The study was conducted in two phases: (1) modelling to 
devise a metabolite-based estimation of GA during full-
term pregnancies and (2) modelling to devise a meta-
bolic panel predictive of PTB (figure 1). In this study, the 
‘gold’ standard of GA was US measurement based on the 
crown-rump length at the first trimester.25 Serum samples 
were collected in the first, second or third trimester 
during pregnancy for each individual woman. Each 
participant had one to four time-points collected prior 
to delivery. Samples were provided by Stanford Hospital 
and Clinics (SU) and the University of Alabama (UAB). 
Metabolic concentrations in each sample were measured 

by targeted and untargeted mass spectrometry (MS) anal-
ysis. Models that estimated GA or predicted PTB were 
developed using the SU cohort and validated using the 
UAB cohort. All samples were collected after informed 
consent was obtained. All statistical analyses were done in 
R software.

Targeted and global MS analysis
Samples of full-term and preterm patients as well as 
quality control (QC) samples were injected into the MS. 
Targeted MS analysis was done through flow injection 
methods by using Ultimate 3000 Ultra-High-Performance 
Liquid Chromatography (UHPLC) system and Quantiva 
Triple Quadrupole Mass Spectrometer. Global (ie, untar-
geted) MS analysis was done by using a Vanquish UHPLC 
system coupled to a Q Exactive plus mass spectrometer 
and Q Exactive HF hybrid Quadrupole-Orbitrap mass 
spectrometer.

Data preprocessing and metabolic identification
A data preprocessing procedure was conducted to convert 
the raw data generated by MS analysis into a matrix of rela-
tive concentrations of metabolites versus samples.26 This 
procedure was done by R package. Metabolic values in 
each sample were then normalised by the median values 
measured with QC samples to reduce the batch effects.

Compounds detected by untargeted analyses were 
matched to metabolites in the Human Metabolome Data-
base by putative identification.27 Accurate mass was used 
for the mapping. Metabolites were mapped to pathways 
using Kyoto Encyclopedia of Genes and Genomes and 
Human Metabolome Database. Only endogenous path-
ways were considered.

Metabolic compound selection, pathway computation and 
model development
Metabolites measured by targeted and untargeted MS 
were aggregated and filtered. The remaining metabolites 
were mapped to pathways. The value of each pathway 

Figure 1  Study design. Models were developed separately 
to estimate gestational age during full-term pregnancy, and to 
predict the risk of preterm birth. Both models were developed 
with the Stanford Hospital and Clinics (SU) cohort and 
validated with the University of Alabama (UAB) cohort.
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was calculated as the weighted sum of the normalised 
concentrations of metabolites on the pathway divided by 
the number of metabolites. An XGBoost model was devel-
oped with the pathway values of samples from full-term 
patients to estimate the GA. R-squared (R2; goodness-
of-fit of the model), root-mean-square error (RMSE) and 
error distribution were calculated to evaluate the model 
performance. A second XGBoost model was developed 
to predict PTB. To evaluate the model performance, 
Mann-Whitney U tests were used to compare the distribu-
tion of final predictive estimates, that is, XGBoost model 
values, on full-term and PTB samples. Additional details 
of model development are described in online supple-
mental appendix text A1. ELISA tests were conducted 
on the SU and UAB cohorts to evaluate the insulin-like 
growth factor-binding protein 4 (IBP4)/sex hormone-
binding globulin (SHBG) signature, a predictor that was 
validated in a prospective study as a predictor of sponta-
neous PTB.19 Serum concentrations were measured using 
commercial kits Human IGFBP4 ELISA Kit (Abcam, Burl-
ingame, California, USA) and Human SHBG Quantikine 
ELISA Kit (R&D System). Results were compared with 
our metabolic model.

Patient and public involvement statement
This retrospective research was done without patient 
involvement. Patients were not invited to comment on the 
study design and were not consulted to develop patient 
relevant outcomes or interpret the results. Patients were 
not invited to contribute to the writing or editing of this 
document for readability or accuracy.

RESULTS
Samples
As shown in figure 2, the SU cohort had 20 full-term preg-
nancies with 57 blood samples (17, 32 and 8 collected in 
the first, second and third trimesters, respectively) and 16 
preterm pregnancies with 32 blood samples (9, 19 and 4 

collected in the first, second and third trimesters, respec-
tively). The UAB cohort had 9 full-term pregnancies 
with 13 blood samples (8 and 5 in the second and third 
trimesters, respectively) and 13 preterm pregnancies 
with 22 blood samples (4 and 18 in the first and second 
trimesters, respectively). In the SU cohort, two (12.5%) 
were extremely preterm (<28 weeks) and five (31.3%) 
were very preterm (28–31 weeks). In the UAB cohort, 
six (46.2%) were extremely preterm, and three (23.1%) 
were very preterm. Our SU and UAB cohorts were assem-
bled: no complications of pregnancy were included; all 
deliveries were singleton and all PTB were spontaneous. 
Demographics of the two cohorts are shown in table 1.

LC-MS/MS metabolomics
The study targeted 315 metabolites by LC-MS/MS, 
including 13 categories: acyl-carnitine (11, 3.5%), amino 
acid (9, 2.9%), fatty acid (6, 1.9%), ceramide (12, 3.8%), 
ceramide 1-phosphate (8, 2.5%), galactosylceramide (5, 
1.6%), phosphatidyl acid (15, 4.8%), phosphatidyletha-
nolamine (52, 16.5%), phosphatidylglycerol (5, 1.6%), 
phosphatidylinositol (11, 3.5%), phophatidylcholine 
(130, 41.3%), cholesteryl ester (16, 5.1%) and sphingo-
myelin (35, 11.1%). The study also identified 1627 posi-
tively and 295 negatively charged compounds through 
untargeted analyses. Together these formed the initial set 
of 2237 compounds.

Feature selection of GA estimation modelling
Of the 2237 compounds, 118 had an absolute Pearson’s 
correlation coefficient of >0.35 with GA. The cut-off of 
±0.35 was selected based on the false discovery rate (FDR) 
values of the mapped pathways <1% (online supplemental 
appendix figure A1). The 118 compounds were mapped 
to 89 pathways, 33 of which were selected by the XGBoost 
model. The normalised value of each pathway varied over 
the course of gestation (online supplemental appendix 
figure A2). Univariate analysis of the 33 pathways is shown 
in online supplemental appendix figure A3, and the top 
10 pathways in the model is depicted in figure 3. The top 
10 pathways included those associated in the metabolisms 
of: glycerophospholipid, arginine and proline, thiamine, 
purine, butanoate, galactose, sulfur, phenylalanine and 
C5-branched dibasic acid.

Performance of GA estimation
The performance of GA estimates on full-term samples 
was similar in the development phase (SU cohort, 
R2=0.98, RMSE=1.09) and the validation phase (UAB 
cohort, R2=0.81, RMSE=2.36) (figure 4). In our validation 
testing, 66.7% of the estimates were within ±1 week of the 
US results (online supplemental appendix figure A4).

Intriguingly, model performance significantly deteri-
orated when applied to samples from PTB pregnancies 
(R2=−0.68 and RMSE=6.6 in validation; see figure  4). It 
suggested that the relationships between metabolic param-
eters and full-term pregnancies were not maintained in 
PTB pregnancies. Furthermore, such disruptions were 

Figure 2  Cohort construction. Each line represents an 
individual patient. Diamond and triangle markers indicate 
sample collection dates and delivery dates, respectively. The 
red dashed line represents 37 weeks’ gestational age.
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notable as early as 10 weeks’ GA (figure 4) or early to mid-
gestation. These findings prompted the development of a 
metabolic-based model of PTB estimation.

Performance of PTB prediction
Samples collected before 35 weeks’ GA were used to 
develop a model that differentiated PTB pregnancies 
from those full-term. As before, the model was developed 
with the SU cohort that had 20 full-term (54 samples) and 
16 preterm (32 samples) pregnancies, and was validated 
with the UAB cohort that had 9 full-term (13 samples) 
and 13 preterm (22 samples) pregnancies. In total, 
148 metabolic compounds (with Mann-Whitney U test 
p<0.05) were mapped to 66 pathways (FDR <1.5%; see 
online supplemental appendix figure A5). Further model 
development selected 10 pathways as strong predic-
tors covering the metabolisms of glycerophospholipid, 

sphingolipid, taurine and hypotaurine, arachidonic acid, 
secondary bile acid biosynthesis, glycerolipid, cysteine 
and methionine, tryptophan and arginine and proline 
(figure 5).

The level of prediction accuracy was maintained in 
the validation cohort (p=5×10−5, area under the curve 
(AUC)=0.92; see figure  6). The prevalence-corrected 
positive predictive values (PPVs) across model values 
(ie, scores) were plotted based on the PTB prevalence 
in Alabama in 2018 (12.5%; see online supplemental 
appendix figure A6). A threshold value of 0.52 was selected 
as a high-risk threshold for PTB, which was associated 
with a PPV of 0.70, a relative risk (RR) of 5.6 compared 
with the US population baseline (=0.70/12.5%), a sensi-
tivity of 0.86 (19 of 22) and a specificity of 0.92 (12 of 
13; figure 7). The sensitivities and specificities with cut-off 
values are shown in online supplemental table A1.

Table 1  Maternal characteristics in SU and UAB cohorts

Characteristic Full-term (n=20)

SU

P value Full-term (n=9)

UAB

P value

SU vs 
UAB

Preterm (n=16) Preterm (n=13) P value

Race, n (%) <0.001*** 0.5 <0.001***

Asian 0 1 (6.3) 0 0

White 20 (100) 5 (31.3) 0 2 (15.4)

Black 0 1 (6.3) 9 (100) 10 (76.9)

American Indian 0 2 (12.5) 0 0

Pacific Islander 0 1 (6.3) 0 0

Other/Unknown 0 6 (37.5) 0 1 (7.7)

Hispanic, n (%) 0 8 (50) <0.001*** 0 1 (7.7) 0.9 0.1

Maternal age, year, mean (SD) 31.9 (4.8) 29.8 (7.5) 0.3 25.6 (5.0) 27.5 (4.5) 0.4 0.008**

Gestational age at delivery, weeks, 
median (IQR)

39.5 (39, 41) 32 (30, 33) <0.001*** 38 (37, 39) 28 (26, 32) <0.001*** 0.01*

Having previous pregnancy, n (%) 9 (45) 6 (37.5) 0.7 9 (100) 13 (100) 0.4 <0.001***

BMI, kg/m2, median (IQR) 22.3 (20.2, 24.7) 27.6 (23.4, 33.9) 0.003*** 30.4 (22.3, 33.1) 26.5 (22.6, 36.5) 0.8 0.06

History of PTB, n (%) 3 (15) 8 (50) 0.03* 7 (77.8) 13 (100) 0.2 <0.001***

*P<0.05; **P<0.01; ***P<0.005.
BMI, body mass index; PTB, preterm birth; SU, Stanford Hospital and Clinics; UAB, University of Alabama.

Figure 3  The importance of the top 10 metabolic pathways 
in the gestational age estimation model. Pathways either 
positively or negatively correlated gestational age.

Figure 4  Gestational age estimates of the gestational age 
model with the Stanford Hospital and Clinics (SU) (R2=0.98, 
root-mean-square error (RMSE)=1.09 weeks) and University 
of Alabama (UAB) cohorts (R2=0.81, RMSE=2.36 weeks).
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In the validation cohort, 12 of 13 full-term samples and 
19 of 22 preterm samples were classified correctly. The 
misclassified full-term sample was from a mother that 
delivered at 37 weeks’ GA. The 19 correctly classified PTB 
samples were from 13 PTB pregnancies. Of the 13 preg-
nancies, 9 were identified as high risk at or earlier than 16 
weeks’ GA. The median gap between the time of identifi-
cation and the delivery was 11 weeks’ GA (IQR: 8, 15.5).

To determine the performance of our metabolic model 
against existing models, a comparison between the meta-
bolic PTB risk model and the commercially available 
IBP4/SHBG PTB test was performed and is summarised 
in online supplemental appendix text A2 and online 
supplemental appendix figure A7.

Metabolite-based model and pathway-based model: a 
comparison
To determine the effectiveness of model performance 
based on robustness of biological features, we compared 
model performance using pathway or individual metabo-
lite as selected features in estimating GA and predicting 
PTB. The performance of the pathway-based models were 
significantly better than the metabolite-based models, with 
a lower RMSE (Student’s t-test p=4×10−3; online supple-
mental appendix figure A8) and a larger AUC (DeLong 
test p=0.03; online supplemental appendix figure A9).

DISCUSSION
Principal findings
In this study, we report a panel of metabolic pathways 
measured in maternal serum that provides an estimation 
of GA over the course of a full-term pregnancy. A second 
and distinct set of metabolic pathways was also identified 
in maternal serum that could distinguish pregnancies 
ending with PTB (<35 weeks) from full-term (≥37 weeks) 
with a high degree of precision. The models were devel-
oped and validated using two independent cohorts from 
two different institutions in order to test the robustness of 
the biological features driving the classifications. Intrigu-
ingly, PTB pregnancies do not demonstrate the same 
temporal relationship as term pregnancies on metabolic 
modelling across gestation (figure 4). Indeed, PTB preg-
nancies demonstrate a marked departure from the term 
metabolic profile (figure  4) that is dramatic (R2=0.98 
train and 0.81 test for term model; compared with 
R2=0.50 train and −0.68 test for PTB pregnancy in term 
model), and is recognisable as early as 10 weeks’ GA as 
determined by the current standard of US dating. Recog-
nising the metabolic pathway aberration of PTB preg-
nancies, a second model was developed using metabolic 
pathway analyses to quantify the risk of PTB prior to 35 
weeks’ GA. Once again, metabolic profiling proved to be 
robust in identifying PTB pregnancies with a high degree 
of sensitivity (AUC 0.96 training; AUC 0.92 testing) and 

Figure 5  (A) Univariate analysis of the 10 metabolic 
pathways in the preterm birth prediction model. OR of each 
pathway was calculated. (B) The importance of the metabolic 
pathways in the preterm birth prediction model. Pathways 
were either upregulated or downregulated in relation to 
preterm birth.

Figure 6  (A) Prediction of preterm birth risk grouped 
by full-term and preterm birth patients (top) and over the 
course of gestation (bottom). (B) Area under the curve (AUC) 
performance of the prediction in Stanford Hospital and 
Clinics (SU) and University of Alabama (UAB) cohorts. P value 
was calculated using Mann-Whitney U test.

Figure 7  Performance of the preterm birth prediction model. 
(A) A contingency table showing the number of samples in 
each category. (B) Sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV) together 
with the 95% CIs. SU, Stanford Hospital and Clinics; UAB, 
University of Alabama.
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precision (training PPV 0.93 (95% CI 0.78 to 0.99); 
testing PPV 0.95 (95% CI 0.75 to 1). Taken together, this 
study demonstrated a powerful new, reproducible meth-
odology for monitoring pregnancy progression and iden-
tifying abnormal pregnancies.

Clinical and research implications
The potential clinical utility of developing a test for preg-
nancy monitoring is appealing. There is a need to develop 
a more robust method than LMP and an alternative to 
first trimester US that captures pregnancy progression, 
a complex relationship of fetal and placental growth, 
development and function. To support these processes, 
there is a need for energy transfer between mother and 
fetus throughout gestation. We therefore reasoned that 
metabolic phenotyping would be ideally suited to capture 
this relationship. Despite a modest cohort size, the results 
of metabolic modelling demonstrate a high degree of 
concordance with clinical standard US dating performed 
by experts as reflected by 66.7% of model estimates 
falling within ±1 week of US results (online supplemental 
appendix figure A4). Moreover, unlike the deterioration 
experienced with US dating of pregnancy, metabolic 
modelling was shown to achieve near equivalent perfor-
mance in the first, second and third trimesters, indicating 
the potential for broad clinical applicability that might 
achieve independence of reliance on accuracy of LMP or 
concordance among modality testing. The result of PTB 
prediction is equally robust demonstrating a high degree 
of precision. Beyond relying on clinical histories or self-
reported symptoms, the model proposed here provides 
a molecular classification that may be more accurate 
than current methods and further reflect a compre-
hensive measure of aberrant pregnancy based on meta-
bolic changes. In practice, clinicians could use the PTB 
prediction model to differentiate high-risk from low-risk 
patients. Low-risk patients would then be subject to GA 
estimation panel testing, all from the same blood draw.

A distinct advantage of the PTB risk prediction devel-
oped in this study is that it has a wide window of sampling. 
Samples were collected broadly before 35 weeks’ GA, 
which is wider than the window of other well-established 
biomarkers such as fetal fibronectin (between 24 and 34 
weeks’ GA),20 IBP4/SHBG (19–21 weeks)19 and inter-
alpha-trypsin inhibitor heavy chain 4 protein (24 and 28 
weeks).18 Relatively stable AUC levels were maintained 
throughout the diagnostic window (online supplemental 
taxt A2). The insensitivity of the prediction model to 
GA at testing increases its flexibility and opportunity for 
potential clinical use. An additional advantage of the 
model herein is the ability for early identification of high-
risk women. Although there is no standardised guideline 
for early gestation management of patients at risk of PTB 
delivery, metabolic modelling for PTB risk may provide 
a not previously possible opportunity for early gesta-
tion risk mitigation. Clinical trials have suggested that 
hormone treatment and maternal physical activity modi-
fications applied between 16 and 37 weeks’ GA reduced 

the PTB rate of women who were deemed at high risk 
due to a history of prior PTB delivery.28 29 In many cases, 
PTB cannot be prevented, however any opportunity is 
deemed highly desirable for even a modest delay (1–2 
weeks) in PTB or an enhanced ability to more accurately 
triage for delivery to centres with the capability to manage 
profoundly premature neonates.30–32

This study is among the first to propose a pathway-
based computational methodology to estimate GA and 
predict PTB. Metabolic pathways are linked to chemical 
functions, and the alteration or disruption of specific 
functions participate in disease phenotypes, facilitating 
the use of pathways to function as higher-level biomarkers 
of diseases.33 The role of metabolic pathways in disease 
diagnosis has been explored in several preliminary clin-
ical studies.34 35 Pathway performance in differentiating 
patients with disease from healthy controls has been 
found to be effective compared with using individual 
metabolites.35 Similarly, we found the pathway-based 
models had less variability and higher sensitivity than 
metabolite-based models that were developed using 
the same population. One plausible explanation for 
this observation may be attributed to the calculation of 
pathway values, which represents the sum of individual 
metabolites and thus may amplify association to outcome 
relationships. This hypothesis is supported by the FDR 
comparison (online supplemental appendix figure A8 
and A9): pathway-based analysis had lower FDR values 
than metabolite models. This study adds to the explora-
tion of the feasibility of using pathways for health moni-
toring and prediction.

In this study, glycerophospholipid metabolism was iden-
tified as the most significant contributing pathway for both 
GA estimation and preterm birth prediction. Glycerophos-
pholipids consist of fatty acid chains and have been previ-
ously cited as strong correlates to birth weight, pregnancy 
duration and risk of preterm birth.36 These same authors 
also found different polyunsaturated fatty acid compo-
nents of glycerophospholipid had differential effects on 
fetal growth. Gao et al has reported a potential associa-
tion between glycerophospholipid and labour timing in 
rodent models.37 38 The current study extends those prior 
observations through a quantitative assessment of the 
relationship between glycerophospholipid metabolism, 
GA and the risk of preterm birth. The leading effect of 
glycerophospholipid pathway metabolism in the current 
study was positive in both the assessment of GA and risk 
of preterm birth. These findings add further insight into 
the role of glycerophospholipid metabolism in human 
pregnancy. Other contributing pathways for preterm 
birth prediction such as sphingolipid metabolism, arachi-
donic acid metabolism and arginine and proline metab-
olism were also found associated to preterm. Alterations 
in plasma sphingolipids were found in women who had 
spontaneous PTB.39 Increase of arachidonic acid metab-
olism might correlate to bacteria activities that led to 
preterm labour.40 Plasma level of arginine and citrulline 
was significantly lowered in preterm babies.41
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Taken together, the analysis of the leading path-
ways found to significantly contribute to the metabolic 
pregnancy modelling herein provide ample insights to 
deepen our understanding of pregnancy progression 
and may facilitate the identification and interpretation of 
potential therapeutic targets. Furthermore, we speculate 
that the platform and approaches outlined herein may 
be extended to the interrogation of additional conditions 
of pregnancy including abnormalities of placentation, 
gestational diabetes and fetal growth disturbances among 
others.

Limitations
This study has several limitations. First, the overall cohort 
size was modest, and pregnancies with delivery at 35 or 
36 weeks were not included in the study. Second, blood 
samples were collected in a non-uniform manner with 
respect to GA timing and time of day. The time between 
two adjacent samples corresponding to the same patient 
varied. Third, the distribution of samples throughout 
pregnancy were different between patients and cohorts. 
In the SU cohort, none of the full-term patients had 
samples collected between 30 and 37 weeks. In the UAB 
cohort, none of the full-term patients had sampling in the 
first trimester, and none of the PTB patients had sampling 
in the third trimester. Fourth, for methodologic reasons, 
not all serum analytes could be identified and mapped 
to known metabolites. Fifth, baseline characteristics of 
patients were not included in the analysis. Sixth, the 
study was retrospective, and the participants were solely 
from California and Alabama. A larger prospective cohort 
study with a reasonable ratio of full-term to preterm is 
necessary before applying the estimates and prediction to 
a broader population for clinical utility.

CONCLUSION
The present study demonstrates that maternal serum-
based metabolic profiling is a highly sensitive and accu-
rate method for determining GA and prediction of PTB. 
The pathway-based analysis supports the hypothesis of 
the orderly metabolic progression of pregnancy that 
can be reproducibly captured using metabolic profiling. 
The robustness of the modelling reinforces the potential 
appeal for further clinical development and as a platform 
to investigate the pathophysiology associated with aber-
rant fetal development and pregnancy progression. This 
study is the first to report a single blood test for metabolic 
pathway-based determination of GA dating, and early 
detection of PTB risk.
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Table A.1. Sensitivity and specificity of the XGBoost model with respect to the cutoff 

point.  

Cutoff Cohort Sensitivity Specificity 

Number of preterm 

samples identified 

by the model 

0.4 

SU 0.94 0.78 30 

UAB 0.95 0.31 21 

0.5 

SU 0.88 0.94 28 

UAB 0.86 0.85 19 

0.6 

SU 0.81 0.98 26 

UAB 0.59 1 13 

0.7 

SU 0.53 0.98 17 

UAB 0.32 1 7 
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Text A.1 Metabolic compound selection, pathway computation, and model 

development  

GA estimation 

Metabolites measured by targeted and untargeted MS were aggregated and filtered using 

Pearson correlation coefficient analyses in relation to GA. The remaining metabolites 

were mapped to pathways. The value of each pathway was calculated as the weighted 

sum of the normalized concentrations of metabolites on the pathway divided by the 

number of metabolites. The weight of each metabolite was the absolute value of the 

Pearson correlation coefficient in relation to GA. Metabolites having positive or negative 

coefficients were aggregated separately. That is, a pathway could have two values, one 

for metabolites positively correlated to GA, and the other for those negatively correlated 

to GA.  

A supervised, cross-validated machine-learning technique XGBoost was developed with 

the pathway values of samples from full-term patients in the SU cohort. An ensemble of 

regression trees was generated to give a score estimating the GA. The model was 

validated on the UAB cohort. For a patient that had multiple samples, an ‘integrated’ GA 

estimate was calculated by shifting the GA estimates of every sample to a reference point 

for obtaining the median. Error distribution of GA estimation based on patients was 

calculated as the distribution of the differences between the ‘integrated’ GA estimates 

and the US measurement.  

PTB prediction 
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Samples collected before 35 weeks’ GA were selected to build the model to predict PTB. 

Mann–Whitney U test was used to select the initial candidate metabolites that were then 

mapped to pathways. The value of each pathway was calculated as the weighted sum of 

the normalized concentrations of metabolites on the pathway divided by the number of 

metabolites. The weight of each metabolite was the absolute value of the ratio of median 

of full-term samples to PTB samples. Like the GA estimation, pathways could have two 

values that depended on the ratio of median greater or less than 1. An XGBoost model 

was developed utilizing samples from the SU cohort and validated with the UAB cohort. 
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Text A.2 Metabolite model vs. IBP4/SHBG in predicting PTB 

We conducted ELISA tests on the SU and UAB cohorts to evaluate the IBP4/SHBG 

signature, a predictor that was validated in a prospective study as a predictor of 

spontaneous PTB. Commercial kits Human IGFBP4 ELISA Kit (Abcam, Burlingame, 

CA, USA) and Human SHBG Quantikine ELISA Kit (R&D System Inc.) were used. 

AUC of the predictor was calculated in different GA intervals and with different maternal 

BMI values, and was compared to the performance of the metabolic model.  

With a BMI of >22 and ≤37 kg/m
2
, the AUC values of the IBP4/SHBG predictor peaked 

at 15–20 weeks’ GA (SU: 0.833; UAB: 1), and dropped rapidly after 20 weeks (Figure A 

below). The AUC values were lower with extreme BMI (0.7 at BMI ≤20 kg/m
2
 and 0.63 

at BMI >27 kg/m
2
; see Figure B below). These findings are consistent with the previous 

validation study. Compared with the IBP4/SHBG predictor, the metabolic model has a 

more stable AUC performance over the gestation and different BMI values in SU (P = 

0.03). In UAB at >18 weeks’ GA, the AUC of IBP4/SHBG dropped from 0.6 to 0.3, 

while the AUC of the metabolic model was above 0.8. 
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