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A B S T R A C T

To understand the disparities in spontaneous preterm birth (sPTB) and/or its outcomes,

biologic and social determinants as well as healthcare practice (such as those in neonatal

intensive care units) should be considered. Disparities in sPTB have been largely intractable

and remain obscure in most cases, despite a myriad of identified risk factors for and causes

of sPTB. We still do not know how they lead to the different outcomes at different gesta-

tional ages and if they are independent of NICU practices. Here we describe an integrated

approach to study the interplay between the genome and exposome, which may drive bio-

chemistry and physiology and lead to health disparities.
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The existence of disparities in the occurrence of preterm birth
Fig. 1 –Simplified representation of how various factors,

such as the exposome andmaternal medical history, race/

ethnicity, education, genetics, socioeconomic status, and

history of a previour PTB can affect specific gene expression

patterns, which can subsequently impact microbial genes,

proteins, metabolites, and lipids over the course of gesta-

tion and lead to PTB.
(PTB) and care practices in neonatal intensive care units

(NICUs) is indisputable.1 Indeed, variabilities in healthcare

practices (and underlying personal biases) likely contribute to

differences in the outcomes of preterm babies, especially

those at the earlier “periviable” gestational ages (GAs).2 How-

ever, differing practices also might be more tractable or ame-

nable to change through the implementation of quality

improvement (QI) policies if unconscious personal biases and

institutional or structural biases can be exposed and

addressed through systematic behavioral interventions and

policies for which there is evidence of efficacy.3 Disparities in

PTB occurrence have been largely intractable, despite risk fac-

tors having been identified because the causes of PTB are

myriad and the causes of spontaneous PTB (sPTB), in particu-

lar, remain obscure in most cases.4 It is possible that our tax-

onomy of PTB, which has been based primarily on GA at birth

or existence of a known morbidity that prompts iatrogenic

preterm birth, is not sufficient for understanding how various

upstream causes of PTB might actually contribute to the dif-

ferent outcomes at different GAs independent of NICU

practices.4

A new taxonomy might be based on a better understanding

of the underlying biology leading to PTB in individual cases �
or stated in another way � based on a better understanding

of how the various risk factors, most of which have been

described as social determinants (demographic, psychosocial,

and physical environments) are reflected in the underlying

biologic response pathway to pathologic timing of parturi-

tion.5 The purpose of this review is not to relegate either bio-

logic or social determinants of PTB to some predominate

status with respect to causation, but to make the case for

their integration as a better way to identify predictive, pre-

ventive, and curative approaches to the public health prob-

lem of PTB as well its associated morbidities and mortality.

To identify etiologic factors and reduce the burden of PTB

requires an integrated approach involving systems-wide

analyses of PTB encompassing a variety of ‘omic’ perspec-

tives, including genomic, epigenomic, transcriptomic, proteo-

mic, metabolomic, lipidomic, and microbiomic as well as

demographic, psychosocial, and environmental factors.5 If

observations can be made longitudinally in women at the

same time pre-conception and throughout gestation, it might

then be possible to create a personalized integrative profile,

setting the stage for a comprehensive description of a normal

pregnancy as well as pathologic pregnancies, such as PTB6

and preeclampsia.7 Moreover, new insights into the phenom-

ena of term labor and early labor or preeclampsia would likely

ensue.

Most importantly, apparent disparities could be examined

from any number of perspectives, elucidating causal path-

ways and possible remedies, as the various observations

could be translated one into another for determining practical

approaches to prediction and prevention for an individual

pregnant woman. For example, looking for a sole genetic

explanation for disparities in PTB is a fool’s errand; while

genetic factors are worth considering, they are unlikely suffi-

cient for solving the problem(s). The expression of genes in

response to a symbolic or physical environment (exposome)
� or the symphony of gene expression over the course of ges-

tation (including microbial genes), gene products (proteins),

metabolites (human and microbial), and lipids � would be

more likely to yield information relevant to the hunt for mod-

ifiable causal factors of PTB5 (Fig. 1). For this reason, the ques-

tion: “Is it possible to monitor with minimal invasion (a blood

sample from the mother) the gene expression pattern of the mother,

fetus, and placenta throughout gestation?” becomes a more use-

ful one than the question: “What genes in the mother, baby, or

placenta might be associated with PTB?” While there have been

some genes that have been associated with PTB, they do not

account for much of the risk for PTB, and by themselves, thus

far contribute little to our understanding of causation.6 Gene

expression patterns reflect the impact of the exposome on

the genome and support the notion that any racial differen-

ces in this regard more likely reflect social constructs.

On the other hand, the answer to the first question is “yes”

� with measurements that can be made in a blood sample

from the pregnant woman. Because cell-free DNA (cfDNA)8
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and RNA (cfRNA)9 can be measured in the circulation during

gestation, and the source of the cfRNA can to some extent be

ascertained, they may provide a way of “eavesdropping” on

the “3-way conversation” between the mother, fetus, and pla-

centa during pregnancy.10 There are hundreds of genes

whose expression change (being expressed early or late, being

up- or down-regulated) throughout gestation.10 This horo-

logic symphony of gene expression during gestation repre-

sents a transcriptomic clock and can be used to characterize

a normal pregnancy.10 Based on such measurements, GA can

be estimated with as few as nine genes, suggesting another

approach to estimation of fetal maturity where access to fetal

ultrasound is limited. Disruptions or alterations in this clock

can predict pathologic outcomes, such as PTB, based on as

few as seven genes.10 These findings suggest that what is

important is not so much what gene variants a woman has,

but how and when those genes are expressed. Considering

that most women who might be categorized as “at risk” for

PTB based only on risk factors do not experience the outcome

for which they are at risk (e.g., African-American women are

at higher risk for PTB), such findings also suggest that risk

can be more personalized when integrating (combining) risk

factors with information regarding a mother’s underlying

biology resulting from the interaction of the genome and the

exposome � which is exactly what the transcriptome reveals

in the context of pregnancy.

As it turns out, many of the genes that are changing their

expression during gestation are genes implicated in immune

regulation.11 Not surprisingly, the immune balance of preg-

nancy is Nature’s way of measuring time during gestation, as

mother and fetus shift from mutually tolerant dispositions to

one of rejection (inflammation), ultimately triggering the final

common pathway of parturition (labor and expulsion of the

fetus).7,12 Thus, the risk of an individual pregnant woman

might be better understood by interrogating her immune cells

directly over the course of gestation. Cytometry by time-of-

flight mass spectrometry (CyTOF) is a technique that can pro-

vide a “snapshot” of the whole immune system by quantify-

ing the phenotype and distribution of the myriad of

circulating immune cells and interrogating single-cell func-

tional responses.13�16 The latter allows the signaling

responses of cells to be characterized, thus providing insight

into how immune cells might respond to various stressors in

the exposome. Using CyTOF, immune cell behaviors (unique

“signatures”) have been found to precisely track GA in

healthy pregnancies11 and differences in immune cell signal-

ing responses early in gestation have been identified that pre-

dict pathologies of pregnancy, such as preeclampsia.17 A

similar approach is being used to identify an immunologic

“trigger” or inflection point at which the occurrence of ensu-

ing labor can be predicted. The importance of this work stems

from the fact that gene pathways are implicated and poten-

tial molecular targets can be identified for prevention of spon-

taneous preterm labor or preeclampsia many weeks or

months before clinical signs would be recognized.17 In some

cases, PTB might be predictable based on particular immune

cell-stimulated responses before a woman becomes preg-

nant, especially in women with a previous history of PTB.16

Neither biologic nor social (demographic, psychosocial, and

physical) determinants alone are currently sufficient for
predicting a woman’s risk for PTB. From a public health per-

spective, preventive strategies might involve mitigating social

determinants or biologic determinants, or in some circum-

stances, both. Critically important to any effort to eliminate

or ameliorate disparities in PTB or other pregnancy outcomes

is an understanding how the genome and exposome interact

to influence metabolic and physiologic responses. With such

knowledge, health outcome disparities can be understood as

biologic vulnerabilities or resiliencies or in combination. How

racism (personal or structural) “causes” PTB might be not

only better understood, but also ways to prevent PTB as a con-

sequence of racism might include other means besides the

ultimate goal of eliminating such despicable biases.18

Data on the microbiome during pregnancy provide another

perspective on how disparities in PTB might arise. Ordinarily,

the vaginal microbiome is relatively stable throughout gesta-

tion and is characterized by a community state type (CST)

that is dominated by a Lactobacillus species.19 However, in

some pregnant women, another CST has been observed early

in pregnancy which is more diverse and, in particular, is not

dominated by a Lactobacillus species (CST IV).19 These women

have a greater likelihood of delivering preterm. Thus, CST IV

might be characterized as abnormal (unusual) and thus a risk

factor for PTB in Caucasian women in whom the observation

was originally made, but normal (usual) and not a risk factor

per se in African-American or Hispanic women.20 Nonethe-

less, there are certain microbial communities making up CST

IV in African-American women that still might be associated

with increased risk for PTB, reflecting the importance of not

only what microbes contribute to CST IV, but what those

microbial communities are capable of producing, i.e. their

metabolic activity.20 Indeed, the latter could contribute to the

overall metabolism of the human host, thus being integral to

proteomic or metabolomic data obtained from the pregnant

women.

Adding complexity to the story, there is evidence for a

microbial “disturbance” after either vaginal or cesarean-sec-

tion birth, which persists for a variable time after birth.19 This

disturbance involves a diversity of microbes, typically lacking

a predominate Lactobacillus species, characteristic of CST IV.

Epidemiologic data suggest that a short interpregnancy inter-

val (IPI) of less than 9 months is associated with an increased

risk for PTB. A plausible explanation for this observation

could be that becoming pregnant while such a postpartum

disturbance persists might put a pregnancy at risk for PTB

because of the associated proinflammatory disposition of the

mother during this transition.21 Based on epidemiologic find-

ings, PTB risk from a short IPI applies to both Caucasian and

African-American women, but more African-American

women are likely to have short IPIs, thus creating a greater

population burden of occurrence of PTB among African-

American women.22 If there were a safe and effective micro-

biome-based intervention, then there might be a way to miti-

gate the biologic determinant of a persistent vaginal

microbial disturbance in some women. Such an approach

might better avoid the possibility of exacerbating disparity in

PTB by introducing an effective intervention, if it were com-

bined with educational or behavioral interventions address-

ing the challenges of access to the intervention or to its

implementation or adoption by a part of the public.
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Other findings bring into further focus the complexity of

PTB disparity. For example, the progesterone receptor (PGR),

which plays an important role in maintaining human preg-

nancy,23�26 has been under considerable evolutionary pres-

sure (natural selection) over tens of thousands of years

related to human migrations out of Africa.27 Genetic analyses

demonstrate that derived alleles in the PGR locus common in

East Asians are associated with a reduction in early sPTB as

well as medically-induced PTB (which in most cases is due to

preeclampsia), suggesting positive selection and conferring

an advantage to the human lineage in that environmental

locale with whatever pressures might have existed in that

time and place relative to elsewhere. On the other hand, with

another human migration out of Africa and into Europe, the

PGR locus became highly diversified by balancing selection,

suggesting that the various polymorphisms in the PGR locus

might be reflecting immune adaptions to the pressures of

that locale.27 Today, alleles in the PGR locus common in East

Asians appear to occur at low frequencies in other popula-

tions and importantly, in African-American women (rela-

tively recent migrants out of Africa over the last several

hundred years). This may suggest negative selection, again in

response to unknown environmental factors over tens of

thousands of years.27 Ironically, such alleles observed in Afri-

can-American women today are associated with an increased

risk of early sPTB; whereas, the presence of the more com-

mon PGR alleles are associated with a decreased risk of early

sPTB as well as medically-induced PTB.28 This set of findings

is an example of how genotype may only matter in a particu-

lar environmental (demographic, psychosocial, and physical)

context and how it matters is reflected in the phenotype (in

this case, PTB). Importantly, the outcomes are largely func-

tional in this regard. Modern transportation and powerful

social determinants create consequential gene-environment

mismatches not infrequently.

Integration of such high-dimensional (omic) biological

datasets provides unique opportunities for increasing predic-

tive power, revealing previously unrecognized cross-talk

between biological systems, and identifying shared path-

ways. However, such analytic integration poses unique

computational challenges caused by the differences in the

number of biological features measured using various tech-

nologies, resulting in large untargeted assays overwhelming

machine-learning models and depriving small, but carefully

targeted, assays from contributing to a final model. This is

further complicated by the differences observed in the inter-

nal correlation structure of each biological modality,6 where

large untargeted assays often produce largely redundant and

highly correlated measurements. This can be addressed

through a class of machine-learning algorithms collectively

referred to as stacked generalization.29�31 In this setting,

each biological modality is first analyzed independently, and

then a higher level model combines the insights extracted

from each modality. Various other approaches can also be

used such as sparse canonical correlation analysis (CCA) that

generalizes correlation analysis to multiple datasets,32 multi-

ple co-inertia analysis that generalizes the notion of covari-

ance in these settings,33 and STATIS that combines multiple

modalities into a common structure in order to observe pat-

terns in the data.34 Integration of social determinants into
these biological models provides further opportunities for not

only increasing predictive power, but also understanding bio-

logical mechanisms and guiding interventions based on com-

binations of modifiable factors. In addition to traditional joint

causal modeling of biological factors and social determi-

nants,35 modern machine-learning analyses can be achieved

through algorithms that are capable of smoothly adjusting

the coefficients of a biological model based on observed exter-

nal social determinants.36 The heterogeneity of biological and

social determinant data further precludes the straightfor-

ward use of classical machine-learning approaches. The

high-dimensional structure of the data demands some form

of dimensionality reduction for exploratory data analyses

and yet, even one of themost widely used approaches, princi-

pal component analysis (PCA), operates on numerical varia-

bles. On the other hand, data on social determinants includes

categorical variables, some of which are possibly strong pre-

dictors (e.g., African-American race). Including categorical

variables into a PCA can be achieved by using methods such

as optimal-scaling categorical PCA,37 multiple factor analy-

sis,38 or by including group means of categorical variables

into the PCA analysis.39

With respect to disparities in outcomes of preterm infants

in the NICU, it is important to re-emphasize that differences

in the occurrences of certain morbidities, such as broncho-

pulmonary dysplasia (BPD), intraventricular hemorrhage

(IVH), necrotizing enterocolitis (NEC), and retinopathy of pre-

maturity (ROP), may indeed reflect disparate practices which

can be addressed by QI processes addressing care itself. How-

ever, these conditions just as likely reflect trajectories of bio-

logic processes set in motion early in pregnancy. Thus, our

current taxonomy of PTB based only on GA, although neces-

sary for understanding the risk profile of a particular infant,

may not be sufficiently informative to develop best practices

for care of an infant with a specific morbidity. More research

on how the pathologically-altered biology of the mother,

fetus, and placenta ultimately affects the course of the preg-

nancy and the product of that pregnancy � the newborn � is

needed. Such researchmust include an integrated accounting

of biologic and social determinants of health, in order to

ascertain the best predictive, preventive, and therapeutic

interventions for ensuring the public health and considering

our particular focus, PTB.

In conclusion, “lived experience” is important to consider in

ascertaining the risk for PTB. However, noting a women’s lived

experience does not explain how it gets into her biology and

then gets expressed as early initiation of labor. As lived experi-

ence conceptualizes what has been referred to as social deter-

minants of health, it represents a powerful factor in predicting

health outcomes and directing efforts to prevent or mitigate

adverse ones. This perspective does not obviate the contention

that the capacity for gene expression and requisite down-

stream biology is critical to the development of a particular

phenotype (normal or pathologic). Indeed, all human condi-

tions have biologic and social determinants, and need to be

considered as consequences of the interplay of the genome

and the exposome. It is a mistake to categorize a condition as

either genetic or environmental. For example, phenotypic con-

sequences of a condition like phenylketonuria (PKU), which is

most often referred to as a genetic condition (it certainly has a



TAGGEDENDS E M I N A R S I N P E R I N A T O L O G Y 4 5 ( 2 0 2 1 ) 1 5 1 4 0 8 5
genetic component), can be prevented by altering the environ-

ment (nutritional intake); and the condition of scurvy only

occurs because humans lack an enzyme (L-gulonolactone oxi-

dase) to convert a substrate to ascorbate.4

Therefore, in order to understand sPTB disparities or dis-

parities in outcomes of preterm infants, both biologic and

social determinants should be considered. Developing an

integrated understanding of the interplay between the

genome and the exposome is fundamental to this endeavor.

Moreover, ancestry or more precisely, the genetic record of

such interactions from an evolutionary perspective are also

relevant to this effort. In the end, it is genomic (whether that

be actual structural changes to DNA or modification based on

the epigenome) expression and the consequences of that

expression in terms of transcripts, proteins, and metabolites

that drive our biochemistry and physiology. Health dispar-

ities are reflected in the latter, but their origins are likely

always in a social (demographic, psychosocial, and physical

environment) context. The disparities in PTB and outcomes

of preterm infants in the NICU are no exceptions.
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