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ABSTRACT: Preterm labor (PTL) is frequently associated with
inflammation. We hypothesized that biomarkers during pregnancy
can identify pregnancies most at risk for development of PTL. An
inflammation-induced mouse model of PTL was used. Surface-
enhanced laser desorption/ionization time-of-flight mass spectrome-
try was used to analyze and compare the plasma protein (PP) profile
between CD-1 mice injected intrauterine with either lipopolysaccha-
ride (LPS) or PBS on d 14.5 of gestation. The median differences of
normalized PP peaks between the two groups were determined using
the Mann-Whitney U test and the false discovery rate. In a second
series of experiments, both groups of mice were injected with a lower
dose of LPS. A total of 1665 peaks were detected. Thirty peaks were
highly differentially expressed (p � 0.0001) between the groups.
Two 11 kDa protein peaks were identified by MALDI-TOF/TOF-MS
and confirmed to be mouse serum amyloid A (SAA) 1 and 2. Plasma
SAA2 levels were increased in LPS-treated animals compared with
controls and in LPS-treated animals that delivered preterm vs. those
that delivered at term. SAA2 has the potential to be a plasma
biomarker that can identify pregnancies at risk for development of
PTL. (Pediatr Res 66: 11–16, 2009)

Preterm birth is the most important cause of neonatal
morbidity and mortality in the United States (1–3). De-

spite several interventions including use of various tocolytics,
antibiotics, and monitoring uterine contractions the incidence
of preterm birth in the United States has not decreased in the
past few decades and is currently at 12.7% (4,5) (Births.
Preliminary data for 2005 http://www.cdc.gov/nchs/). More
recently, the use of progesterone has been shown to be effec-
tive in prevention of preterm labor (PTL) in a select group of
women. However, the mechanism by which this occurs is still
unknown (6,7). One of the problems in preventing PTL is our
inability to accurately identify which pregnancies are most
likely to be complicated by PTL (8). Detection of a biomarker
during pregnancy may assist in identifying an at risk popula-
tion of pregnant women in whom a particular treatment can be
studied. It can also help us gain important insights into the
molecular pathways resulting in PTL.

There is strong evidence to suggest that intrauterine (IU)
infection or inflammation has a strong association with pre-
term delivery (3,9–11). It is estimated that an overt or sub-
clinical IU inflammation is present in close to 25–75% of
births that result from spontaneous PTL (12,13). The timing of

onset of IU inflammation and whether these markers of in-
flammation are present in the plasma is unknown. A sensitive
diagnostic marker identified in early pregnancy may assist in
early application of preventive therapies for women at risk for
developing PTL.

Surface-enhanced laser desorption/ionization time-of-flight
mass spectrometry (SELDI-TOF/MS) is a high throughput
proteomics technology that has been used for discovery of
potential biomarkers of diseases (14–22).

In this study, we used a mouse model of inflammation-
induced PTL to discover potential biomarkers that are differ-
entially expressed between mice that delivered preterm vs.
those that delivered at term.

MATERIALS AND METHODS

Animals. CD-1 mice, 8–10 wk old, were purchased from Charles River
(Wilmington, MA). All animal protocols were performed in accordance with
Stanford University Animal Care and Use Committee guidelines.

Experiment 1. Lipopolysaccharide (LPS) from Escherichia coli 0111:B4
purified by phenol extraction was used to induce IU inflammation (L2630,
Sigma-Aldrich Chemical Co., St. Louis, MO). On d 14.5 of gestation, a mini
laparotomy was performed, after anesthetizing with Avertin (240 mg/kg body
weight). LPS (25 �g) (n � 10) suspended in 100 �L of PBS was injected
between the first two gestational sacs of the right uterine horn using the
technique described by Elovitz et al. (23). Control animals (n � 10) received
100 �L of sterile PBS. After the uterus was returned to the abdomen, the
fascia and the skin were closed. Using this method, the animals recovered well
with no signs of morbidity.

Experiment 2. In the second series of experiments, all animals were
injected with a lower dose of LPS. Twenty micrograms of LPS suspended in
100 �L of PBS was injected between the first two gestational sacs of the right
uterine horn on d 14.5 of gestation. Thirteen animals were injected.

Plasma collection. Blood samples were collected in an EDTA-coated
microtainer (BD, Franklin Lakes, NJ) by infraorbital puncture and centrifuged
at 5000� g for 10 min at 4°C. Plasma was removed, aliquoted, and stored at
�80°C until analysis.

SELDI-TOF MS. The SELDI-TOF/MS protocol used for proteomics
profiling has been described previously (24). Plasma (20 �L) was pretreated
with U9 solution (9 M urea/2% CHAPS/50 mM Tris pH 9; 30 �L) and applied
to a strong anion exchange bead at pH 9 (Q-ceramic HyperD F, Pall Life
Sciences, Ann Arbor, MI) in a 96-well Silent Screen filtration plate (NUNC,
Rochester, NY). The sample-loaded anion exchange beads were then washed
sequentially with buffers (200 �L each) at pH 9, 7, 5, 4, and 3, and finally with
33.3% isopropanol/16.7% acetonitrile (ACN)/50% H2O/0.2% trifluoroacetic
acid (TFA). Aliquots of the eluates (10 �L each) from the above fractions were
suspended in the appropriate binding buffers and applied to ProteinChip SELDI
arrays: CM10, a weak cation-exchange surface and H50, a reversed-phase surface
(Bio-Rad Laboratories, Hercules, CA). Binding buffers were 0.1 M sodium
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acetate buffer (pH 4) for CM10 arrays and 10% ACN/0.1% TFA for H50 arrays.
After washing and air drying, sinapinic acid was applied to the arrays.

The ProteinChip Arrays were read on a Bio-Rad PCS4000 mass spectrom-
eter to obtain mass spectra of the fractionated samples. Mass spectra were
obtained at three laser intensities: low (3500 nJ), medium (4800 nJ), and high
(7250 nJ), using instrument parameters optimized for small, medium, and
large proteins. A total of 60 spectra were generated for each sample (five
fractions on two types of arrays with three different laser intensities run in
duplicate). Spectra were externally calibrated using spectra of a mixture of
protein standards in the range of 7–30 kDa (Protein Standards II, Bio-Rad).

Statistical analysis. All mass spectra were normalized by total ion current.
Peak selection was based on m/z and signal intensity using the ProteinChip
Data Manager Software 3.0.7, Enterprise Edition (Bio-Rad). The mean inten-
sity for each peak from duplicate spectra was combined.

The Mann-Whitney U test was used to discover peaks discriminating
between the PBS-injected control and LPS-injected study groups. To control
for “multiple hypothesis testing” a permutation-based approach for the false
discovery rate (FDR) estimation was used (25,26). When a given p value
threshold was applied to the original data set to evaluate the significance of all
peaks, the total number of differential peaks consisting of true and false positives
was obtained. The same p value threshold when applied to all 100 permutated
data sets yielded 100 different numbers of positive differential peaks.

The ratios between the false positives, including the mean, median, and
95% distribution of the 100 different false positives and total number of
positives was used for the estimation of the FDR. After a global assessment
of FDR, the local FDR was computed and used as an additional guideline for
choosing the optimized p value threshold and deciding whether a peak was
truly differentially expressed (27,28). The same method was used for spectra
from experiment 2.

Biomarkers purification and identification. The three 11 kDa protein
peaks that were significantly different between the PBS and LPS groups were
further purified. Twenty microliters of plasma from LPS-injected mice was
used. In the initial step, the ProteomeLab IgY-HSA SC Proteome Partitioning
Kit (Beckman Coulter, Fullerton, CA) was used to remove abundant albumin
in plasma. Flow through (500 �L) was concentrated to 100 �L using
Microcon YM-3 Centrifugal Filter Unit (Millipore, Billerica, MA). Fraction-
ation by anion-exchange chromatography was performed as described earlier
(SELDI-TOF/MS). The concentrated flow through was washed sequentially
with buffers (500 �L each) at pH 7, 5, 4 and organic buffer. Each elution was
detected on the CM10 chip by SELDI-TOF/MS.

Further purification using hydrophobic fractionation was performed as
follows. Fractions 3 and 4 containing the protein peaks of interest were bound
to reverse-phase beads (polystyrene/divinyl benzene PLRP-S beads, Polymer
Laboratories, Amherst, MA) for 30 min at room temperature. The beads were
centrifuged and the supernatant solution was collected after centrifugation.
The protein bound beads were washed with solutions containing increasing
percentages of ACN (10, 20, 30, 40, 50, 60, and 70%) in 0.1% TFA. Each
hydrophobic fraction was collected and analyzed on NP20 array to locate the
fractions containing the biomarker peaks.

Biomarkers were identified by 1-D SDS PAGE and MALDI-TOF/
TOF-MS (Applied Biosystems 4700, Foster City, CA). Hydrophobic fractions
containing the protein peaks of interest were dried and resuspended in
SDS-PAGE sample buffer and run on a NuPAGE Bis-Tris gel (4–12%;
Invitrogen, Carlsbad, CA). The gel was stained with Coomassie Blue (Sim-
plyBlue, Invitrogen) followed by destaining overnight at 4°C. Bands at
approximately 11 kDa were excised. Protein was extracted from part of the
gel pieces using 10 �L of an elution buffer (50% formic acid, 25% ACN, 15%
2-propanol, and 10% water) and the bands containing the biomarker peaks
were identified by obtaining mass spectra of the gel band extracts on NP20
ProteinChip arrays.

Each gel piece containing the biomarker peak was reduced with DTT,
alkylated with iodoacetamide, and digested with 100 ng trypsin. Trypsin
digests were spotted to MALDI target plates and analyzed by MALDI-TOF/
TOF MS. The 10 most abundant ions that did not correspond to the known
masses of trypsin autolytic products were analyzed by MS/MS to obtain
sequence data. The Mascot search engine was used to search the NCBI
database for protein identification.

ELISA assay. Serum amyloid A (SAA) 2 levels in mouse plasma were
measured using an ELISA kit specific for mouse SAA2 (Life Diagnostics Inc.
West Chester, PA). Standards and samples were tested in duplicate.

RESULTS

Experiment 1. In the initial dose-response series conducted
before sample collection for SELDI-TOF/MS, IU injection of
25 �g LPS resulted in PTL in 10 of 11 injected mice. This

dose was subsequently used for studies in experiment 1.
Plasma of all mice was sampled 15 h after LPS (n � 10) or
PBS injection (n � 10) and processed for MS to find biomar-
kers associated with LPS-induced prematurity. Peaks were
obtained after mass calibration, baseline subtraction, and nor-
malization using the clustering and alignment function of
ProteinChip Data Manager Software 3.0.7, Enterprise Edition.
Altogether, 1665 peaks were evaluated by the Mann-Whitney
U test. Of these peaks, 222 were significantly different at p �
0.01, 100 at p � 0.001, and 30 at p � 0.0001 (data not shown).

One method to control for the number of statistical tests
being performed (a problem of multiple hypothesis testing) is
to examine the FDR for these data. The web-based FDR
analysis tool (http://translationalmedicine.stanford.edu/Mass-
Conductor/FDR.html, Ling, unpublished data) was used to
calculate the global FDR at different Mann-Whitney p value
thresholds and the protein-specific local FDR (27,28). To
select a stringent cutoff, the local FDR of 0.005 was used to
guide the selection of the p value threshold, leading to a
Mann-Whitney p value of 0.0001. At this threshold, global
FDR has been controlled to be less than 0.1%. In summary,
the selection of Mann-Whitney p value of 0.0001 as the
optimized p value threshold, guided by both the global and
local FDR analysis yielded a total of 30 highly differentially
expressed peaks for further characterization.

Experiment 2. The goal in experiment 2 was to inject all
mice with a slightly lower concentration of LPS, a concentra-
tion that would not lead to premature birth in all the mice.
Injection of 13 mice with the lower concentration of LPS
resulted in seven mice that delivered at term, and six mice that
gave birth preterm. When the plasma samples were analyzed,
a total of 1718 peaks were detected. There were 128 peaks
with p value �0.01 with FDR �0.1 (data not shown).

The most significantly different peaks in both experiments
were a group of m/z 11,600–11,800 found in fractions 3 and
4 of the anion-exchange–treated plasma samples. On the basis
of the results from FDR, p values, ROC, and spectra from
experiments 1 (Table 1) and 2 (Table 2), three biomarker
peaks with m/z of approximately 11,640, 11,720, and 11,780
(Fig. 1) were further purified and identified.

Biomarker identification. After depletion of albumin,
mouse plasma was fractionated on anion-exchange chroma-
tography similar to that used during the discovery phase. The
material that eluted from anion-exchange beads in fraction 4 (a
pH 4 extraction that followed a pH 5 extraction) was further
fractionated by reverse-phase chromatography. The material that
eluted at 40% ACN was dried, solublized in SDS-PAGE buffer,
and separated using SDS-PAGE. As shown in Figure 2C, bands
A and B from SDS-PAGE were found at approximately 11 kDa,
which was close to the m/z 11,600–11,800 biomarkers detected
by SELDI. Protein extracted from both bands A and B was
confirmed by SELDI using the NP20 chip. Figure 2A, B, D, and
E shows the mass spectra obtained during the purification pro-
cess. A peak with mass size 11,899 was detected from band A
(Fig. 2D) and two peaks 11,792 and 11,875 were detected from
band B (Fig. 2E). Other portions of these bands were digested
with trypsin, and the resultant material was analyzed by MALDI-
MS/MS. Sequence analysis demonstrated that each 11 kDa band
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contained a mixture of mouse SAA1 and 2 as showed in Figure
2F and G. The presence of two SAA isoforms in each band is
demonstrated by the observation of SAA1-derived peptides of
masses 1130.50 and 1455.62 (indicated in boxes in Fig. 2F and
G) and peptides of masses 1146.50 and 1487.73 (underlined in
Fig. 2F and G) in the MS spectra of both bands.

The mass of mouse SAA1 is 11,754, and that of mouse
SAA2 is 11,605. There is a shift in m/z of the peaks extracted
from SDS-PAGE from both the m/z of the biomarkers before
SDS-PAGE, and the calculated mass of the proteins of the
peptides identified in the SDS-PAGE gel bands. This shift is
likely due to a combination of modifications of proteins that
occur during SDS-PAGE (e.g. alkylation with acrylamide
adds 71 to the mass) and extraction of proteins from SDS-
PAGE gel bands (e.g. multiple formylation reactions, each of
which adds 28 to the mass) (29,30).

ELISA. In experiment 1, the median and mean plasma
levels of SAA2 were elevated 40-fold and 10-fold, respec-
tively in the LPS-treated animals compared with PBS controls
(Table 3). In experiment 2, the median and mean SAA 2 levels
were 2-fold higher in the mice that delivered preterm com-
pared with those that delivered at term (Table 4).

DISCUSSION

In the first series of studies, we found several biomarkers
that were significantly different between control mice that
delivered at term and LPS-treated mice that developed PTL. In
the second series of studies, in which mice were injected with

a lower dose of LPS, some developed PTL, whereas others
injected with the same dose delivered at term. There were
several differences in the biomarker profiles between these
two groups. Of the two biomarkers that were different between
the animals that delivered at term vs. preterm, we identified
two 11 kDa biomarkers to be SAA1 and SAA2.

SAA has been identified as a plasma biomarker in several
disease states including prostate and ovarian cancer (31–33).
Quantitative analysis by ELISA showed that the amount of
SAA2 was higher in animals that developed PTL vs. term
labor in both groups, validating the role of SAA in the
development of PTL in this model. Despite the small sample
size of this study, the results are intriguing.

The SAA family includes several proteins with a molecular
weight between 11 and 12 kDa (34). SAA is an acute phase
reactant that is generated largely by the liver, but also in leuko-
cytes and by other organs (35). High amounts are present in
inflammatory disorders such as rheumatoid arthritis, atheroscle-
rosis, and in various malignant diseases (36–38). It has also been
shown to be present in the human first trimester trophoblast (39).

It has been hypothesized that in PTL, infection or inflam-
mation results in the release of proinflammatory cytokines that
stimulate matrix metalloproteases (MMPs) and prostaglandin
synthesis resulting in uterine contractions (40,41). The regu-
lation of SAA gene expression occurs at the level of transcrip-
tion. Although there are various pathways and transcription
factors that can activate SAA expression under different con-
ditions, SAA gene expression in inflammation is induced by

Table 1. Proteomic features expressed significantly between LPS-injected and PBS-injected groups with p � 0.0001 and local FDR �0.005

Feature
SELDI

surface-fraction-laser
Peak
(m/z) ROC Local FDR p

Intensity � SD
Fold

changePBS (n � 10) LPS (n � 10)

1 CM10-Fx3-medium 11,643 0.98 0.00147 0.0000108 6.3 � 5.8 53.5 � 30.8 8.49
H50-Fx3-medium 11,637 0.98 0.00391 0.0000433 23.6 � 31.9 218.2 � 119.2 9.25
H50-Fx3-low 5,818 0.98 0.00391 0.0000433 3.5 � 3.6 25.4 � 17.2 7.26
H50-Fx3-medium 5,814 0.98 0.00168 0.0000217 4.6 � 4.9 33.9 � 18.4 7.37

2 CM10-Fx3-medium 11,722 0.98 0.00391 0.0000433 11.2 � 4.6 32.9 � 13.8 2.94
H50-Fx3-medium 11,769 0.98 0.00168 0.0000217 18.5 � 23.0 170.3 � 92.4 9.21
H50-Fx4-medium 11,754 0.94 0.00391 0.0000758 19.3 � 23.1 121.2 � 77.1 6.28

3 CM10-Fx3-medium 11,789 0.98 0.00147 0.0000108 7.4 � 6.6 64.1 � 37.9 8.66
H50-Fx3-medium 11,867 0.98 0.00391 0.0000433 4.8 � 6.0 41.2 � 25.0 8.58
CM10-Fx3-low 5,883 0.98 0.00147 0.0000108 1.6 � 0.5 5.7 � 3.8 3.56
CM10-Fx3-medium 5,886 0.98 0.00147 0.0000108 1.8 � 1.8 10.2 � 4.7 5.67
H50-Fx3-medium 5,899 0.98 0.00147 0.0000108 5.8 � 3.4 28.6 � 15.1 4.93
H50-Fx3-low 5,903 0.98 0.00147 0.0000108 4.1 � 2.4 20.8 � 12.9 5.07
H50-Fx5-medium 5,905 0.94 0.00391 0.0000758 1.1 � 0.7 3.8 � 1.6 3.45

4 CM10-Fx3-medium 11,979 0.98 0.00391 0.0000217 3.4 � 2.4 17.8 � 10.5 5.24
H50-Fx4-medium 11,990 0.94 0.00391 0.0000758 3.1 � 3.5 17.6 � 10.5 5.68
H50-Fx3-medium 11,995 0.98 0.00168 0.0000217 3.0 � 3.4 26.3 � 14.7 8.77

5 CM10-Fx3-medium 12,163 0.94 0.00391 0.0000758 2.2 � 1.7 10.1 � 5.5 4.59
H50-Fx3-medium 12,171 0.98 0.00147 0.0000108 0.9 � 0.4 4.8 � 2.6 5.33
H50-Fx4-medium 12,245 0.98 0.00391 0.0000108 1.2 � 0.8 4.8 � 2.5 4.00

6 CM10-Fx3-medium 12,336 0.94 0.00168 0.0000758 1.0 � 1.0 6.2 � 3.6 6.20
H50-Fx3-medium 12,430 0.94 0.00391 0.0000758 0.4 � 0.4 2.8 � 1.6 8.23

7 H50-Fx3-high 20,309 0.98 0.00168 0.0000217 0.1 � 0.01 0.5 � 0.2 6.27
H50-Fx3-medium 20,389 0.98 0.00391 0.0000433 0.2 � 0.1 0.7 � 0.3 4.23

8 H50-Fx3-medium 20,528 0.98 0.00168 0.0000217 0.1 � 0.1 0.7 � 0.3 4.85
9 CM10-Fx3-high 28,145 0.94 0.00391 0.0000758 5.2 � 2.0 11.8 � 3.9 2.27

10 H50-Fx3-high 39,900 0.98 0.00168 0.0000217 0.2 � 0.1 0.6 � 0.2 2.81
H50-Fx1-high 79,796 0.98 0.00391 0.0000758 0.02 � 0.01 0.04 � 0.01 1.64

p values were from Mann-Whitney U test.
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various proinflammatory cytokines (42). In turn, SAA can
induce secretion of cytokines by leukocytes and stimulate
attraction of leukocytes in areas of inflammation, thus aug-
menting the cycle (43,44). SAA also induces expression of

MMPs, enzymes degrading extracellular matrix (45), a key
step in cervical ripening during labor.

LPS, a major component of the outer wall of Gram-negative
bacteria acts by binding to adaptor proteins which allow for

Figure 1. Representative SELDI
spectra from plasma. (A) Group of
peaks of m/z 11,600–11,800 on CM10
chips from experiment 1. The three
peaks 11.63 (*), 11.72 (**), and 11.78
(§) kDa are shown. Plasma spectra
from mice injected with 25 �g LPS
(solid line) or PBS (dotted line). (B)
Group of peaks of m/z 11,600–11,800
on CM10 chips from experiment 2.
Plasma spectra from mice injected
with 20 �g LPS that delivered preterm
(solid line) or term (dotted line).

Table 2. Proteomic features expressed significantly between LPS-injected groups that delivered preterm vs. term with p � 0.05

Feature
SELDI

surface-fraction-laser
Peak
(m/z) ROC p

Intensity � SD
Fold

changeLPS-term (n � 7) LPS-preterm (n � 6)

1 CM10-Fx3-medium 5,813 0.89 0.014 4.8 � 2.6 11.6 � 4.5 2.42
CM10-Fx3-medium 11,637 0.94 0.0082 49.1 � 24.9 101.9 � 23.7 2.08
CM10-Fx4-medium 11,635 0.79 0.035 113.8 � 34.9 154.8 � 33.6 1.36
CM10-Fx5-medium 5,820 0.85 0.035 154.7 � 38.9 209.9 � 46.0 1.46
CM10-Fx6-medium 11,643 0.79 0.014 19.6 � 6.3 30.4 � 10.2 1.55

5,821 0.85 0.0221 111.6 � 35.3 180.3 � 43.3 1.62
H50-Fx3-low 5,819 0.94 0.0082 6.7 � 4.2 20.5 � 7.8 3.06
H50-Fx3-medium 5,817 0.94 0.0082 10.1 � 5.3 23.8 � 7.5 2.36

11,646 0.94 0.0082 57.1 � 48.3 147.3 � 39.8 2.58
H50-Fx4-low 5,819 0.89 0.0221 8.1 � 2.7 14.3 � 4.1 1.77
H50-Fx4-medium 11,621 0.94 0.0047 4.3 � 4.0 19.3 � 10.2 4.49

5,814 0.89 0.0221 12.7 � 3.7 21.1 � 5.8 1.67
H50-Fx6-medium 11,645 0.89 0.0221 10.2 � 3.9 17.1 � 4.0 1.68

2 CM10-Fx3-medium 11,723 0.85 0.035 42.4 � 14.4 65.3 � 16.3 1.54
CM10-Fx4-medium 5,865 0.94 0.0047 47.1 � 12.9 71.1 � 7.4 1.51

11,722 0.89 0.014 75.3 � 20.1 103.1 � 19.8 1.37
3 CM10-Fx3-low 5,878 0.94 0.0082 5.0 � 2.6 12.6 � 4.5 2.52

CM10-Fx3-medium 5,878 0.94 0.0082 8.5 � 3.3 15.9 � 4.3 1.87
11,784 0.94 0.0082 56.6 � 27.3 124.1 � 35.3 2.19

CM10-Fx4-medium 5,886 0.85 0.014 37.1 � 12.2 56.6 � 11.3 1.53
11,781 0.85 0.0221 160.9 � 53.6 223.7 � 55.3 1.39

CM10-Fx6-medium 11,782 0.85 0.0221 44.2 � 15.5 65.1 � 18.1 1.47
H50-Fx3-low 5,899 0.94 0.0082 5.7 � 3.0 18.2 � 8.0 3.79
H50-Fx3-medium 5,897 0.94 0.0082 8.8 � 3.4 21.5 � 7.3 2.44

11,783 0.94 0.0082 47.9 � 23.4 138.5 � 49.4 2.89
H50-Fx4-low 5,899 0.85 0.035 9.4 � 3.1 17.4 � 5.7 1.85
H50-Fx4-low 5,899 0.94 0.0082 14.7 � 3.8 24.9 � 6.9 1.69

11,779 0.85 0.014 79.6 � 23.2 150.1 � 44.7 1.89
H50-Fx5-low 5,897 0.94 0.0082 14.7 � 3.8 24.9 � 6.9 1.69
H50-Fx5-medium 5,898 0.85 0.0221 3.8 � 1.1 5.5 � 1.3 1.45

11,783 0.85 0.0221 14.4 � 4.9 22.1 � 6.3 1.53
H50-Fx6-medium 11,781 0.89 0.035 13.2 � 5.0 21.7 � 4.7 1.64

4 CM10-Fx3-medium 11,992 0.94 0.0082 12.3 � 5.0 25.2 � 8.0 2.02
H50-Fx3-low 5,987 0.94 0.0082 1.7 � 0.8 4.9 � 2.1 2.88
H50-Fx3-medium 5,984 0.89 0.0082 4.4 � 0.5 5.3 � 0.4 1.20

11,993 0.94 0.0082 7.9 � 3.5 21.3 � 7.4 2.67
H50-Fx4-medium 11,994 0.85 0.0221 12.1 � 3.9 20.1 � 5.5 1.66
H50-Fx5-medium 11,994 0.85 0.0221 3.0 � 1.0 4.6 � 1.3 1.53
H50-Fx6-medium 11,996 0.89 0.014 2.4 � 0.9 3.8 � 0.8 1.58

p values were from Mann-Whitney U test.
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binding to toll-like receptor-4 (46). This results in activation
of a pathway leading to activation of NF-�B and upregulation
of various proinflammatory cytokines. These cytokines stim-
ulate SAA production with further augmentation of the in-
flammatory cascade resulting ultimately in premature uterine
contractions.

We hypothesize that SAA plays an important role in the
pathogenesis of inflammation-induced PTL, and can possibly
serve as a biomarker of inflammation-induced PTL early in
pregnancy. SAA levels have been shown to be increased in
pregnant women with preeclampsia compared with controls (47).
Although the animal model used was not optimal for the study of
preeclampsia or IU growth retardation, conditions that are asso-
ciated with PTL, it is interesting to speculate if SAA may be a
marker for other obstetrical complications that result in premature
delivery. Because of inherent differences between mouse and
human pregnancies, extrapolating these findings to the bedside is
fraught with difficulties. Further studies in both animal models
and humans will need to be performed to determine the clinical
significance of these findings.
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