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P-glycoprotein (Pgp) mediated drug efflux affects the absorption, distribution, and clearance of a broad
structural variety of drugs. Early assessment of the potential of compounds to interact with Pgp can aid in
the selection and optimization of drug candidates. To differentiate nonsubstrates from substrates of Pgp, a
robust predictive pharmacophore model was targeted in a supervised analysis of three-dimensional (3D)
pharmacophores from 163 published compounds. A comprehensive set of pharmacophores has been generated
from conformers of whole molecules of both substrates and nonsubstrates of P-glycoprotein. Four-point 3D
pharmacophores were employed to increase the amount of shape information and resolution, including the
ability to distinguish chirality. A novel algorithm of the pharmacophore-specifict-statistic was applied to
the actual structure-activity data and 400 sets of artificial data (sampled by decorrelating the structure and
Pgp efflux activity). The optimal size of the significant pharmacophore set was determined through this
analysis. A simple classification tree using nine distinct pharmacophores was constructed to distinguish
nonsubstrates from substrates of Pgp. An overall accuracy of 87.7% was achieved for the training set and
87.6% for the external independent test set. Furthermore, each of nine pharmacophores can be independently
utilized as an accuratemarker for potential Pgp substrates.

INTRODUCTION

P-glycoprotein (Pgp),1-3 the product of the multidrug
resistance (MDR) genes, is a member of the ATP-binding
cassette superfamily of active transporter proteins. It is
located in the plasma membrane of mammalian cells with a
molecular weight of 170 kDa and is assumed to consist of
two homologous halves joined by a linker region, each half
containing six transmembraneR-helix segments and a
consensus nucleotide binding domain. Pgp is normally
expressed at many physiological barriers,4 including the
apical membranes of the epithelia, the luminal surface of
the small intestine, colon, capillary endothelial cells of the
brain, and kidney proximal tubules. Besides expelling
xenobiotic and cytotoxic endogenous chemical agents, the
Pgp-mediated efflux pump can efficiently transport a wide
variety of clinically important drugs leading to multidrug
resistance and changes in pharmacokinetics. Substrates
transported by Pgp can be as diverse as cancer therapeutics
(doxorubicin and paclitaxel), HIV protease inhibitors (am-
prenavir and indinavir), cardiac drugs (digoxin and quini-
dine), and chemicals from many other drug classes. The
understanding of Pgp-mediated drug efflux can have impli-
cations for improving blood-brain-barrier penetration of
central-nervous-system (CNS) drugs, designing chemothera-
peutical anticancer drugs, enhancing renal and biliary excre-
tion of substrate drugs, and minimizing Pgp-related drug-
drug interactions.

Pgp-mediated drug efflux has been one of the major
obstacles to the success of cancer therapeutics, as high
expression of Pgp is observed in many cancer cells.5 One

approach to overcome the undesired MDR phenotype is the
use of MDR reversal agents that inhibit Pgp transport.
Another approach to circumvent MDR is to identify potential
Pgp substrates early in the drug discovery process and to
select drug candidates that are less likely to be transported
by Pgp. The transport activity assessment of MDR reversal
agents (i.e., Pgp inhibitors) or Pgp substrates can be achieved
experimentally throughin Vitro or in ViVo assays, or
computationally through simulations based onin silico
models of quantitative structure-activity relationships (QSAR).

In general, three types ofin Vitro assays have been utilized
to screen the binding activity of substrates and inhibitors to
Pgp.3 They are (1) transport assays on confluent cell
monolayers (e.g., monolayer efflux assay), (2) accumulation
and efflux assays using fluorescent probes (e.g., Calcein-
AM assay), and (3) ATPase assays that monitor the ATPase
activity of Pgp proteins. The monolayer efflux assay,
whereby the apparent permeability ratio of basolateral-to-
apical direction (Bf A) to apical-to-basolateral direction
(A f B) of the drug is compared with one in the presence
of a Pgp inhibitor, is currently the definitive way for
identifying Pgp substrates. However, the monolayer efflux
assay is labor-intensive and very low throughput. In addition,
it only provides concordant results for those compounds with
apparent passive permeability between 20 and 300 nm/s and
a mass recovery rate exceeding 50%.6 For compounds
exhibiting high passive permeability (>300 nm/s), the
Calcein-AM assay is recommended to detect the percentage
inhibition of fluorescence response relative to a positive
control that is considered to give a maximum response, while
the ATPase assay measures changes in basal ATPase activity
in the presence and absence of potential substrates. Both
Calcein-AM and ATPase assays offer higher throughput and* Correspondingauthor.Tel: (650)813-1192.E-mail: li5xiong@yahoo.com.
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are readily automated. However, both tend to underestimate
the substrate activity of compounds with low permeability.
Moreover, the ATPase assay also suffers from high intra-
and interassay variability.

The ultimate determination of the impact of Pgp-mediated
efflux on drug pharmacokinetic properties requiresin ViVo
examinations based on transgenic or mutant animal models.3

Transgenic animal models have been produced through gene
knockout by removing or silencing genes that express Pgp,
while mutant animal models are naturally deficient in the
expression of a drug efflux transport proteins (e.g., Pgp).
Measuring the CNS uptake of a compound that penetrates
the blood-brain barrier is one such way that is frequently
utilized. The concentration at half time or area under the
curve (AUC) of a compound in brain, blood, or plasma can
be analyzed from animal models with comparison to wild-
type animals. For a substrate of Pgp, the concentration (or
AUC) ratio of brain to blood (or brain to plasma) in animal
models can be observed to increase significantly when
compared to those in wild-type animals.

The in Vitro andin ViVo assays described above are costly,
laborious, and time-consuming. They are considered more
appropriate for use in the later stages of lead optimization
when the candidate compounds exhibit adequate potency and
other superior pharmacokinetic properties. On the other hand,
in silico models for Pgp substrate/inhibitor prediction can
provide a means of rapid and cost efficient assessment early
on during the lead optimization process. X-ray crystal
structures of the transmembrane of Pgp are not yet available
at atomic resolution. Consequently, the existingin silico
models are ligand-based7-15 and are derived primarily from
structure-activity relationships, structural recognition ele-
ments, and multiple pharmacophores of Pgp substrates. In
contrast to most other transport proteins that recognize a few
structurally similar substrates, Pgp recognizes a broad range
of pharmacologically and structurally diverse compounds.
Multiple SAR studies of related series have revealed the
amphiphilic nature of Pgp substrates: the presence of
aromatic rings, hydrophobic groups, and nitrogen atoms or
hydrogen-bond acceptors.

From an analysis of 3D structures for a large diverse set
of drugs, Seelig13 proposed a general pattern for Pgp substrate
recognition comprising two or three electron-donor (or
hydrogen-bonding acceptor) groups with a fixed spatial
separation of 2.5( 0.3 (as a type-I pattern) or 4.6( 0.6 Å
(as a type-II pattern), respectively.

Ekins et al.8,9 utilized HIPHOP or HYPOGEN methods
in Catalyst16 to build pharmacophore QSAR models for
qualitatively ranking inhibitors that inhibit Pgp-mediated
substrate transport. A single substrate pharmacophore was
produced by overlaying likely common structures of vera-
pamil and digoxin, followed by fitting vinblastine to this
substrate model. Pharmacophore alignment of these com-
pounds revealed multiple hydrophobic and hydrogen-bond
acceptor features as important characteristics of Pgp sub-
strates.

Penzotti et al.12 reported an ensemble model of 100
pharmacophores, consisting of a set of two-, three-, and four-
point pharmacophores, to discriminate between Pgp sub-
strates and nonsubstrates. This pharmacophore ensemble was
derived from a full ensemble of conformers of 144 com-
pounds and developed through a pairwise comparison of both

substrates and nonsubstrates at the class level in terms of
the relative information content conveyed by each pharma-
cophore. A compound matching at least 20 pharmacophores
in the ensemble was considered to be a potential Pgp
substrate. The model offered an overall classification ac-
curacy of 80% for the training set, but only 63% for a hold-
out test set.

de Cerqueira Lima et al.17 recently explored a combina-
torial QSAR modeling of Pgp substrates which employs four
typical techniques (k-nearest neighbor classification, decision
tree, binary QSAR, and support vector machines) and four
sets of commonly used descriptors that include 381 molecular
connectivity indices, 173 atom pair descriptors, 72 VolSurf
descriptors, and 189 molecular operation environment de-
scriptors, respectively. Among 16 combinations, the model
using support vector machines and atom pair descriptors
yielded the best predictive accuracy of 81% for their test
set. While these types of methods can be powerful and
accurate, the use of a large number of descriptors (often
>100) and resulting complex models may be not easy for
the medicinal chemists to visually or physically interpret.
Svetnik et al.18 investigated boosting tree or bagging tree
techniques for Pgp substrate classification, each of which
consisted of a sequence of about 100 tree classifers based
on 1522 binarized atom pair descriptors. Though this type
of method can show higher accuracy than other QSAR
methods, such tree ensemble models make predictions by a
consensus and do not offer chemists a single straightforward
relationship between compound activity and the structural
descriptors.

This study aims to develop a global SAR model with
improved accuracy that is capable of representing the
structural diversity of Pgp substrates. A pharmacophore
approach was chosen as it offers a 3D model that can be
intuitive to visualize and simple to interpret. This can
significantly assist chemists involved in the lead optimization
stage of a project.

The strategy we employed to enhance prediction accuracy
applies supervised machine learning techniques to the 3D
pharmacophore descriptors. In this study, only four-point
pharmacophores were used. The reasoning is as follows: (1)
Mason et al.19 observed that it was important to move from
three-point to four-point pharmacophores to increase the
amount of shape information and resolution, including the
ability to distinguish chirality (a fundamental requirement
for many ligand-receptor interactions); (2) preliminary
model development showed that moving from three-point
to four-point pharmacophores resulted in a significant
increase in accuracy; (3) the exclusive use of four-point
pharmacophores rather than a mixture of two-, three-, and
four-point pharmacophores avoids the problematic issue of
correlated (or dependent) descriptors.20

Unlike traditional pharmacophore approaches21 where
activity prediction models were optimized by perturbing and
annealing the chemical features and locations of a very small
set of top-ranking pharmacophores, our approach consisted
of three sequential procedures: (1) the exhaustive enumera-
tion of all possible pharmacophore configurations for both
substrate and nonsubstrate compounds (similar to Penzotti
et al.’s work), (2) the identification of a statistically
significant optimal ensemble of pharmacophores able to
differentiate Pgp substrates from nonsubstrates, and (3) the
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development of a simplein silico model for Pgp transport
activity prediction. In the second procedure, millions of
pharmacophores were evaluated for Pgp efflux activity
through a frequency analysis of pharmacophore occurrence
and then a pharmacophore-specifict-statistic. A set of the
top-ranked, significant pharmacophores was selected as the
basis for the construction of a classification tree. The derived
pharmacophores and classification tree were then evaluated
for predictive performance against an independent test set
of 97 uncorrelated known drugs.

The intention of this article is to present a pragmaticin
silico model, which has been performing extremely well in
our own internal lead optimization projects. It should be
noted, however, that some of the top-ranking pharmacophores
make use of a nontraditional chemical feature (a ring
projection point without the corresponding aromatic ring
feature). These pharmacophores function very well and are
predictive but perhaps should be best interpreted as QSAR
descriptors rather than traditional pharmacophores.

The paper is organized as follows. The Materials and
Methods section provides a description of the data set and
details of the pharmacophore generation and modeling
methodologies. The Results and Discussion section provides
details of the performance of the significant pharmacophores
and classification model and also a comparison of this type
of analysis to ranking by information content. A summary
is provided and future work is discussed in the final section.

METHODS AND MATERIALS

Data Set. Available data from the literature were used
for the training and test sets consisting of 16312 and 976,22

compounds, respectively. All acid and base functional groups
were neutralized.

The 163 training set compounds were obtained from
Penzotti et al.’s work12 and consisted of 91 substrates and
72 nonsubstrates (Supplementary Table A, Supporting In-
formation). CONCORD23 was used to create single 3D initial
geometry from the starting SMILES (Simplified Molecular
Input Line Entry System) strings.

The test compounds were compiled from two sources.
Mahar Doan et al.22 measured Calcein AM inhibition and
apparent permeability ratios on MDR1-MDCKII cells for 93
marketed drugs. Gombar et al.10 developed a QSAR Pgp
model using 58 compounds whose structures were obtained
from the Derwent World Drug Index database.24 From
comparison of these two collections to each other and the
training set and by removing compounds with a molecular
weight above 700 Da, 97 unique compounds were obtained
(Supplementary Table B, Supporting Information).

Pharmacophore Generation.Low-energy conformers of
each compound were generated25 using Catalyst and stored
in Catalyst binary databases. For each compound, the
maximum number of conformers generated was limited to
100, with a maximum conformational energy cutoff of 20
kcal/mol. The average number of stored conformers per
compound was 52.7 for the training set and 48.2 for the test
set.

Pharmacophore generation for the training and test sets
was conducted with Cerius2.26 Four-point pharmacophores
were enumerated using the chirality flag, the minimal feature
separation requirement of 3.0 Å, eight distance bins covering

a length of 20 Å, and six feature types: hydrogen-bond
acceptor (HBA), hydrogen-bond donor (HBD), hydrophobic
(HYD) including aromatic rings and aliphatic chains, nega-
tive ionizable (NEGI), positive ionizable (POSI), aromatic
ring centroid (RING), and aromatic ring projection point
(RNGP). A total of 12.6 million potential four-point phar-
macophores were generated from the training set. The
mapping of a pharmacophore to any conformer of a
compound turns that bit “on” in the index string where each
index identifies a unique pharmacophore in Cerius2.

As mentioned previously, nontraditional pharmacophores
were considered here, consisting of aromatic ring projection
points without requiring that the corresponding aromatic
feature also be present. The analysis showed that these
pharmacophores are still statistically significant. The presence
of this feature in specific cases may imply that the nature of
the ligand/receptor interaction is important but not the
directionality.

Pharmacophore Significance Analysis. In traditional
pharmacophore approaches, typically a small number of
compounds are chosen by hand for the training set, and a
small number of initial conformational alignments are
generated. Using a methodology like HIPHOP/HYPOGEN
from the Catalyst package, the pharmacophore SAR model
can then be iteratively refined for the best activity prediction
by varying the location and identity of the chemical features,
followed by a simulated annealing approach.21 Alternatively,
as in GASP27 from the Sybyl package,28 common feature
pharmacophore patterns can begeneticallyuncovered from
the local optimization of the conformational overlay of
several flexible molecules by mimicking the process of
evolution.27 However, the goal of this work is to seek a
predictive model across a training set of 163 diverse
compounds containing potentially millions of pharmacophore
hypotheses. This is beyond the capacity of the above
methods. With inspiration from Tibshirani et al.’s work29

on microarray data analysis, a significance analysis of
pharamacopores (SAP) for activity model generation was
designed and implemented to elucidate comprehensive pat-
terns from large sets of pharmacophores.

The method was conceived to unveil 3D structural patterns
of compounds in different activity classes, and such patterns
are assumed to be pharmacophore-specific. To discover these
patterns, we adopt a two-classt-statistic based on the ratio
of change in pharmacophore occurrences to standard devia-
tion in compound classes for that pharmacophore. A full
implementation of the method has been documented by
Tibshirani’s group and is available at the following Web
site: http://www-stat.stanford.edu/∼tibs/SAM/index.html. A
concise description of relevant procedures along with our
customization is given below.

The ranking scoredj for pharmacophorej is computed as

where<xj
S> and <xj

N> are defined as the average occur-
rences for pharmacophorej in Pgp substrate class S and
nonsubstrate class N, respectively.sj is the standard deviation
of occurrence measurements:

dj )
〈xj

S〉 - 〈xj
N〉

sj + s0
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where xj
S and xj

N are the booleans (1 or 0) of mapping
pharmacophorej to a substrate or a nonsubstrate,∑S and
∑N are summations of the occurrence measurements in
classes S and N, respectively, andn1 andn2 are the numbers
of compounds in classes S and N. The constants0 is a fudge
factor, and its value was chosen to minimize the coefficient
of variation ofdj.

Pharmacophores with scoresdi greater than a threshold
are considered potentially significant. Meanwhile, a fraction
of pharmacophores can be called significant by chance. To
estimate the called-by-chance fraction, control data are
required to assign statistical significance to the activity effect
of each pharmacophore. We generated a large number of
controls by computing the ranking scores from 400 sets of
permutations of class labels, S and N, with replacement
across all compounds. Such permutations of class labels have
been assumed to decorrelate activities to the original
compounds and were utilized for significance verification
of in silico SAR modeling.8,9

To measure significant changes in pharmacophore occur-
rences, pharmacophores are sorted in decreasing order of
theirdi values, and indicesj of dj are accordingly reassigned
to consecutive ascending numbers starting from 1. After
reindexing,dj is thejth largest true score. For each permuta-
tion set, artificial ranking scoresdi

p are also calculated, and
the pharmacophores are again sorted and reindexed such that
di

p is the ith largest score for permutationp. The expected
ranking score,di

E, is computed asdi
E ) ∑p di

p/400.
To identify potentially significant changes of pharma-

cophore occurrences, the true scoredi is compared to the
expected scoredi

E. Though for most of them|di| > |di
E|, a

smaller portion of pharmacophores can have their displace-
ments|di - di

E| exceeding a greater threshold (labeled∆),
conveying a higher statistical significance. To determine the
number of falsely significant pharmacophores, a horizontal
cutoff is defined as the smallestdi among the significant
pharmacophores that contribute to activity and the least
negative di among the significant pharmacophores that
contribute to inactivity. The number of called-by-chance
pharmacophores corresponding to each permutation is com-
puted by counting pharmacophores whose artificial scores
exceed the horizontal cutoff. The number of falsely signifi-
cant pharmacophores is estimated at a specific percentile of
the numbers of called-by-chance pharmacophores from all
400 permutations. By varying∆, the number of significant
pharmacophores can be changed as well as the number of
the falsely called pharmacophores. The number of significant
pharmacophores may be optimized when the number of the
falsely called pharmacophores is minimized as∆ increases
in a bottom-up manner.

Classification Tree. Conventional SAR studies for Pgp
have been performed on the basis of classical QSAR
principles which were designed for transporters or receptors
which naturally bindonespecific substrate or analog series
from an aqueous environment. In these types of studies, the
same binding mechanism or mode is often assumed for all
modeled conformations, and solvent or membrane effects

are considered negligible. Seelig et al.1 suggested that the
classical QSAR methods were not adequate to describe the
action mechanism of Pgp as the protein transports not one
specific compound but many diverse substrates. This is
consistent with the publications from various groups that
point to the evidence of multiple drug binding sites for
Pgp.30-32 Furthermore, Pgp differs from other transporters
in that it recognizes substrates dissolved in the lipid
membrane and not in aqueous solution.33 The multiple
binding mechanisms and membrane partitioning effects
present a significant challenge for creating a simplified but
accurate QSAR model.

In this study, a tree-based methodsclassification trees
was taken to circumvent some of the problems associated
with traditional QSAR models. The classification tree splits
the compounds into different subsets by grouping together
the compounds that map to a specific pharmacophore. These
pharmacophores can be independent of each other, and this
allows for a single tree to account for the potential of multiple
binding modes and membrane partitioning effects. In addi-
tion, the splitting descriptors are SAP-selected pharmacoph-
ores, and their high significance can make the interpretation
of the splits less precarious.

The classification tree was constructed using a recursive
partition tree (rpart),34 the algorithm for which has been
published by Breiman et al.35 The Pgp transport activity (or
class label) of compounds is input as a target variable, and
the optimal set of significant pharmacophores identified
through SAP is used as the pool of potential splitting
descriptors. The categorical attribute of the target variable
(i.e., substrate or nonsubstrate) leads to a model of the
classification tree. The root of such a tree starts with a full
set of training compounds. Compounds satisfying the specific
criterion at each junction are assigned to the right branch,
and the others to the left branch. At each junction, the
criterion referred to is the presence or the absence of a
specific pharmacophore in any sampled conformers of a
compound. The classification tree grows by recursively
partitioning the compounds. In growing the tree, the clas-
sification gain of the Gini index, measuring class purity of
the resultant junctions, is maximized at each partitioning step.
Across all significant candidates, the pharmacophore confer-
ring the largest gain in the Gini index is selected as the
primary criterion to split the compound set at the current
junction. If the node has more than 10 compounds, it is
eligible to be further split. The minimal size of each child
node is set to three compounds. And the resultant tree is
back-pruned if its cost complexity decreases by less than
0.02.

RESULTS AND DISCUSSION

Compound Diversity. To illustrate compound diversity
in the training set, the Tanimoto pairwise similarity was
calculated using Daylight fingerprints. The mean pairwise
similarity was 0.21, and the median was 0.17. This indicated
that there was significant chemical diversity in the training
set and the compounds were not from congeneric series.

The 97 compounds from the test set are shown in
Supplementary Table B (Supporting Information). To ensure
diversity for this set, all compounds were compared to each
other and to the training set compounds. Within the test set,

sj ) x1/n1 + 1/n2

n1 + n2 - 2
[∑

S

(xj
S- 〈xj

S〉)2 + ∑
N

(xj
N - 〈xj

N〉)2]
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the average pairwise similarity is 0.21 with a median value
of 0.20sindicating sufficient diversity. When the same
similarity metric is used, the structural relationship of the
test set to the training set was analyzed by computing the
similarity between each test compound and the most
structurally similar compound in the training set. The
pairwise Tanimoto similarity between such compounds is
denoted as the maximal similarity of a test compound to the
training set. Among 97 test compounds, 81 compounds have
a maximal similarity less than 0.70, while only six com-
pounds exceed a maximal similarity of 0.90.36 The magnitude
of similarity coefficients reveals that the test set is structurally
diverse itself and distinct from the training set.

Potential Pharmacophores.Of the 12.6 million possible
pharmacophores, 5.48 million are unique, and 3.32 million
are present in only a single compound. The most frequent
pharmacophore maps to 67 compounds.

The ideal pharmacophore is one that is able to discriminate
between actives and inactives and is present in a moderate
number of compounds. In contrast, pharmacophores with a
very low occurrence (e.g.,< 2%) or very high occurrence
(e.g., >98%) are assumed to be relatively weak class
discriminators and not useful for model generation. In this
study, the most frequent pharmacophore appears 67 times,
well below the median number (N ) 81) of training
compounds, and thus no advantage can be taken from the
cutoff for maximal pharmacophore occurrence. The cutoff
for minimal pharmacophore occurrence was set to 15 to help
reduce the memory requirements of the calculations, resulting
in 63 085 pharmacophores of interest.

Elucidation of Significant Pharmacophores.This re-
duced set of 63 085 potential pharmacophores was taken
forward into the significance analysis. A numeric matrix with
a dimension of 63 085 rows by 163 columns was constructed
representing the pharmacophore indices and compounds,
respectively. Each pharmacophore is inspected against the
index string of each compound, with the value of “1”
assigned to the matrix element of that index if the pharma-
cophore is present; otherwise, it is set to “0”.

SAP was applied to the above matrix, supervised by class
labels for 163 compounds of Pgp substrates versus nonsub-
strates. A total of 400 permutations of class labels were
generated as null reference data. The true classes of
compound activities yielded a realt-statistic score while the
permutations were used to determine an expected score for
each pharmacophore. Figure 1 depicts the scatter plot of real
scores of pharmacophores versus their expected scores. The
solid line suggests an expectation reference, and each
diamond marks a pharmacophore. The pharmacophores
contributing to active conformers of Pgp substrates stand in
the upper right-hand corner, while the pharmacophores
associated with Pgp nonsubstrates sit at the bottom left-hand
corner.

Nearly 100% of 63 085 pharmacophores were displaced
from the expectation line. The relative statistical significances
of these pharmacophores can be determined by the magnitude
of the displacements. The largest displacement of ordered
real scores to null scores is 0.645. Threshold∆’s were set
to 100 intervals equally spaced from 0 to 0.645. At each
interval ∆, pharmacophores whose scores exceeded the
horizontal cutoff were counted separately for the real data
set and 400 permutation sets. The number of called-by-

chance pharmacophores was computed at the 95th percentile
among 400 permutations. As the threshold increases, the
possibility of called-by-chance remains high and nearly
unchanged until∆ ) 0.47; after that, it decreases in a much
faster pace than the real significant pharmacophores. As∆
becomes greater than 0.51, the number of falsely called
pharmacophores drops to zero, and this results in an optimal
set of 598 pharmacophores.

Feature components and spatial arrangements of these
significant pharmacophores are summarized in Supplemen-
tary Table C (Supporting Information). A total of 83% of
the significant pharmacophores contain RING or RNGP
features. A total of 67% contain the HYD feature. The HBA
feature is present in 86% of the significant pharmacophores,
while the HBD feature appears in a lower 28%. The
predominance of hydrogen-bond acceptor features rather than
hydrogen-bond donors supports the suggestion13 that the
ligand acceptor interactions are the most significant. Fur-
thermore, 218 significant pharmacophores each have two
H-bond acceptors, and 23 exhibit the type-II pattern described
by Seelig.13 None relate to the type-I pattern. A total of 45
significant pharmacophores each have three H-bond accep-
tors; among them, 30 exhibit the type-II pattern, and only
one shows the type-I pattern. In the pharmacophore enu-
meration process, the minimum feature separation require-
ment of 3.0 Å may prevent the generation of pharmacophores
that represent the type-I pattern.

The statistics of chemical features exhibited in pharma-
cophores of Pgp substrates are mostly in accordance with
the findings of other similar studies. Biophysical parameters
such as hydrophobicity indices, lipid diffusibility, and
hydrogen-bond acceptor strength have been used to charac-
terize structural features of drugs that mediate their interac-
tion with Pgp.37,38 Another interesting observation is that,
although only 35% of the significant pharmacophores contain
the POSI feature (generally derived from a basic nitrogen
atom), it is present in 11 out of the top 12 most significant
pharmacophoressa strong indication of its key role in certain
binding modes to Pgp. Actually, it has been addressed by
Pearce et al.’s findings that a basic nitrogen atom constituted
the common pharmacophore of Pgp.11 The explanation for
this feature presence could be that weak bases can cross

Figure 1. Scatter plot of realt-statistic scores versus expected
scores for 68 053 pharmacophores. The solid line indicates an
expectation reference, while dashed lines show the optimal cutoff
(∆ ) 0.51) to call the ensemble of 598 significant pharmacophores.
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the lipid membrane in the uncharged form and reprotonate
in the negatively charged cytosolic leaflet of the membrane.

Classification Tree. Recursive partitioning was applied
to the set of 598 discriminate pharmacophores, and the
resulting classification tree that best partitions the 163
training compounds contains nine significant pharmacoph-
ores, labeled Ph1-Ph9, and is shown in Figure 2. Ph1 and
Ph3 were ranked as the top two from the significance
analysis, but Ph2 (rank) 29), Ph6 (rank) 59), Ph7 (rank
) 64), and Ph9 (rank) 80) come from the top 100, and
Ph4 (rank) 530), Ph5 (rank) 498), and Ph8 (rank) 555)
are scattered far behind the others.

Table 1 breaks down the components of the significant
pharmacophores showing feature type, interfeature distances,

and the chirality. All nine pharmacophores contain a
hydrogen-bond acceptor feature, and this implies that this
is an important recognition feature for Pgp-mediated
efflux. The ring projection point appears in six pharmacoph-
ores and indirectly shows the importance of aromaticity
for efflux. The hydrophobic feature is also present in
six pharmacophores. The high representation of these fea-
ture types is consistent with the findings from other published
studies.7,11 The positive ionizable feature appears in
three pharmacophores, and although it is not prevalent in
other pharmacophore studies,9,12 Pearce et al. showed that
a basic nitrogen was an essential feature in his work.11

Unfortunately, in terms of features and interfeature dis-
tances, we failed to align any of these nine pharma-

Figure 2. Classification tree for differentiating Pgp substrates derived from 163 training compounds. Each splitting junction has a
pharmacophore classifier as indicated. If a compound has the classifier pharmacophore, then it goes to the right branch; otherwise, it goes
to the left branch. The text under each leaf node denotes the classification status withN, a nonsubstrate class, andS, a substrate class of
Pgp. The first fraction in parentheses expresses the posterior classification probability, and the second integer corresponds to the number
of training compounds in the leaf. The junction height is proportional to its magnitude of the gain of Gini index.

Table 1. Chemical Features and Spatial Arrangements of Nine Pharmacophore Markers of Pgp Substratea

chemical feature inter-feature distance (Å)

Ph label f1 f2 f3 f4 d12 d13 d14 d23 d24 d34 chiral

Ph1 POSI RNGP HBA RING 5 5.59 6.12 5.59 3.54 4.33 -
Ph2 HBA HBA HBA HBD 5 9.01 9.01 7.5 5.59 3.54 +
Ph3 POSI RNGP HBA HYD 5 7.07 6.12 5 3.54 3.54 -
Ph4 HBA HYD HYD HYD 5 9.01 8.29 5.59 4.33 3.54 -
Ph5 RNGP HYD HBD HBA 2.5 5.59 6.12 5 4.33 4.33 -
Ph6 HYD POSI RNGP HBA 5 9.01 10.61 5.59 6.12 4.33 +
Ph7 HBD HBA HBA HYD 5 10.61 12.75 7.91 9.35 3.54 -
Ph8 HBA HYD RNGP HBA 7.5 9.01 10.61 5 4.33 4.33 -
Ph9 HBA RNGP HBA HBD 5 7.07 8.29 5 4.33 4.33 +

Four feature points are labeled asf1, f2, f3, andf4. The features are abbreviated as H-bond acceptor (HBA), H-bond donor (HBD), hydrophobic
group (HYD), aromatic ring group (RING), aromatic ring projection point (RNGP), and positive ionizable atom (POSI). Distances betweenf1 and
f2 are labeled asd12, and this pattern is followed similarly for remaining distances. In each tetrahedral scheme, the “sign” refers to the sign of the
z coordinate of featuref4: “+” for z > 0 and “-” otherwise, given thatf1 is placed at (0,0,0),f2 hasx > 0, andf3 hasy > 0.
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cophores with Ekins and co-workers’ models for Pgp
inhibitors.8,9

Figure 2 shows the optimized classification tree. Given a
test compoundA, its low-energy conformers are first sampled
through conformational analysis in Catalyst. The resultant
conformers are then mapped to the leading pharmacophore
Ph1. If any of the conformers ofA present a match to Ph1,
the compound is classified as a substrate. If there are no
matches, the compound progresses down the tree, with every
conformer tested against each subsequent pharmacophore for
potential classification as a substrate. If none of the nine
pharmacophores are matched, then compoundA would be
classified as a non-substrate. The possibility of each assign-
ment is indicated as a decimal fraction in the bracket of each
leaf node.

Figure 3 shows a heat map representation of the nine
pharmacophores mapped to the 163 training set compounds.
The columns correspond to the compounds and the rows to
the pharmacophores, with a green block denoting a match;
otherwise, the block is colored red. Pgp substrates are
clustered in the left region and nonsubstrates in the right
region, with the two regions separated by a white dashed
line. This figure shows that the model does very well in
discriminating between substrates and nonsubstrates.

Ph1 maps to 24 substrates and one example of the
alignment are shown in Figure 4. Ph2 maps to 19 substrates,
and only four compounds overlap between the two pharma-
cophores. Ph3 maps to 23 substrates, but 14 of those are
mapped by Ph1 as well. And 14 substrates are not identified
by any of the pharmacophores. A total of 63 nonsubstrate
compounds do not match any of the pharmacophores and
thus are correctly classified as such.

In addition, an unusual pharmacophore pattern can be
observed from the upper-right corner of the heat map (in
Figure 3). If a compound has Ph8 and Ph9 both matched
but the seven other pharmacophores not matched, it can be
classified as a nonsubstrate. Four compounds in the training
set, NSC268251, NSC630148, NSC630721, and NSC674508,
show such a pattern. Though the pattern is statistically
significant in differentiating the Pgp substrate in the model,
further investigation is recommended to determine whether
or not it could merely be a statistical artifact.

The classification tree using multiple pharmacophores
correctly classifies 87.7% of the compounds as substrates
or nonsubstrates. The false negative rate is reasonable at
15.4%, as 14 out of 91 Pgp substrates are incorrectly
classified as nonsubstrates. The false positive rate is very
low at 8.3%, with only six out of 72 nonsubstrates misclas-
sified.

Pharmacophore Markers.As demonstrated in Figure 2,
the classification tree displays a unique structure. Its extreme
asymmetry and simplicity enable each pharmacophore clas-
sifier to be considered as amarker. Similar to the concept
of a biomarker in a clinical diagnostic test, we are able to
use these classifiers as pharmacophore markers for Pgp
substrates. That is to say, independent from the mapping
status of other pharmacophores, the presence of any phar-
macophore marker in a 3D molecular structure can detect a
substrate of Pgp with high confidence. As in a diagnostic
test, the positive predictive value (PPV) or negative predictive
value (NPV) is used to estimate the predictive performance
of the pharmacophore markers.

In this work, the test criterion is whether or not a given
compound maps to a specific pharmacophore. If the com-
pound matches the pharmacophore, the test result is consid-
ered positive and the compound is classified as a substrate.
The PPV of a pharmacophore marker is the probability that
a compound predicted to be a substrate can be confirmed
with real efflux assays. Table 2 summarizes the predictive
performance of each pharmacophore when employed inde-
pendently to discriminate Pgp substrates. Three categories
of pharmacophore markers can be inferred by their prediction
performance and SAP rankings: strong descriptors (Ph1,
Ph2, Ph3, Ph6, and Ph7) with a perfect PPV of 1.00,
moderate descriptors (Ph4 and Ph5) with a PPV of around
0.90, and weak descriptors (Ph8 and Ph9) with a PPV of
around 0.80. The scale from strong to weak denotes the
relative confidence, from high to low, of compounds clas-
sified as Pgp substrates to be confirmed by Pgp activity
assays.

Similarly, the NPV of a pharmacophore can be interpreted
as the probability that a compound predicted to be a
nonsubstrate is truly a nonsubstrate. But each of the nine
pharmacophores has a NPV value of only around 0.50 despite
the fact that each has a high PPV. While, individually, the
probability of a pharmacophore correctly predicting a non-
substrate is low, negative mappings to all pharmacophores
together can predict a nonsubstrate with a high confidence
of 0.81.

Model Evaluation. The actual classes of Pgp activity of
the test compounds have been corroborated mainly by
multiple experiments reported fromin Vitro assays of
monolayer efflux or Calcein-AM andin ViVo assays in animal
models. Compounds having their membrane permeability A
f B in the range of 20 to 300 nm/s were assigned an actual
class in terms of their efflux ratios, Bf A/A f B. This is
the same criteria as in Polli et al.’s work;6 namely, if Bf
A/A f B > 1.5 and collapses to∼1.0 in the presence of a
Pgp inhibitor, the compounds are then assigned to Pgp
substrate; otherwise, they were assigned to Pgp nonsubstrate.
For highly permeable compounds Af B > 300 nm/s, the
Calcein-AM assay result is the alternative reference for efflux
activity, resulting in a Pgp substrate if a positive response
(>10% maximum inhibition response) is detected. For very

Figure 3. Pharmacophore pattern of Pgp substrates versus non-
substrates for 163 compounds, with red spots denoting the presence
and green the absence of the corresponding pharmacophore in the
row to conformers of each compound in the column. Pgp substrates
are clustered in the left region and nonsubstrates in the right region,
and two regions are separated by a white dashed line. Pharma-
cophores Ph1-Ph9 are placed bottom-up in the row.
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low permeable compounds Af B < 20 nm/s, their
assignments were taken from the consensus of the above two
studies, or from the literature such as Seelig et al.’s work if
conflicting assignments exist. There are several special
assignments in Supplementary Table B (Supporting Informa-
tion). The compound metegoline was assigned to Pgp
substrate because it showed the largest percentage (84%) of
inhibition among all Calcein-AM assays in Mahar Doan et
al.’s work. The compound zolmitriptan, with a membrane
permeability Af B ) 2.52 nm/s, was reportedly crossing
the brain-blood barrier39 and clinically categorized as a
nonsubstrate of Pgp.40 In contrast, the molecule sumatriptan,
with a relatively higher membrane permeability Af B )
3.99 nm/s, was reported not to cross the brain-blood barrier
in the preclinical studies41 and exhibited the least CNS-
adverse effects among all triptan analogs, which may imply
a borderline substrate.

The predicted and experimental results for the test set are
given in Supplementary Table B (Supporting Information).
In this set, 64 compounds were classified as Pgp nonsub-
strates, and 55 of them were experimentally confirmed as
true negatives, resulting in an accuracy of NPV) 85.9%.
Nine substrates including cetirizine, chloroquine, daunoru-

bicin, labetolol, mequitazine, methysergide, nalbuphine,
protriptyline, and acrivastine were misclassified as nonsub-
strates. Meanwhile, 33 compounds were classified as Pgp
substrates, and 30 of them were confirmed as true positives,
resulting in an accuracy of PPV) 90.9. Illustrated in Figure
4, test compound pimozide and training compound reserpine
are dissimilar in their 2D molecular structure, but both
contain pharmacophore Ph1. Reserpine is a substrate and
pimozide was correctly predicted as a substrate as well. Three
nonsubstrates including doxylamine, oxprenolol, and warfarin
were misclassified as substrates of Pgp. The overall success
rate is up to 87.6% for the independent test.

Comparison to Ranking by Information Content. To
clarify the performance of the SAP method, SAP-derived
ranking has been compared to another ranking via informa-
tion content.20,42 To address this question, the same number
of 63 085 four-point pharmacophores were ranked by
information content43 and examined individually against the
ranking from SAP. The overlap between the methods was
determined for a series of ensemble sizes ranging fromN )
1 to 1000. For example, for a size ofN ) 100, there are 49
pharmacophores present in both the SAP ensemble and the
information-content ensemble; therefore, the overlapping rate
can be computed as 0.49. It turns out that both rankings yield
the same top two pharmacophores. As depicted in Supple-
mentary Figure A (Supporting Information), when the
ensemble size grows fromN ) 4 toN ) 30, the overlapping
rate averages to about 0.65; fromN ) 30 to 180, it averages
to 0.52 and can drop as low as 0.46 atN ) 95; whenN >
200, it shows a tendency to increase with an average of 0.68
and rises to 0.80 atN ) 1000. In addition, different rankings
for Ph2 and Ph4 through Ph9 are identified as 11, 717, 266,
30, 25, 1322, and 457, respectively. As a whole, both
pharmacophore rankings are consistent but not identical.

Figure 4. (Top) Alignments in Catalyst of pharmacophore Ph1 to two Pgp substrates: reserpine from training set and pimozide from test
set. In both overlays, the positive charge ionizabilty point in red aligns with the aliphatic tertiary amine (-NR2, blue atoms). The light blue
arrow points from an aromatic ring centroid to its projection point; the hydrogen-bond acceptor aligns with the carbonyl groups (>CdO,
red double bond), and its attached cone indicates a hydrogen-bonding direction. The spheres indicate feature points mapped to Ph1. (Bottom)
2D structures of reserpine and pimozide, and sketches of their alignments with Ph1.

Table 2. The Summary for the Alignments of Pharmacophore
Markers to the Training Compounds, and Their Posterior Positive
Predictive Values for Pgp Substrate

Ph
labels

absence from
nonsubstrates

absence from
substrates

presence in
nonsubstrates

presence in
substrates

positive
predictive

value

Ph1 72 67 0 24 1.00
Ph2 72 72 0 19 1.00
Ph3 72 68 0 23 1.00
Ph4 69 72 3 19 0.86
Ph5 71 75 1 16 0.94
Ph6 72 73 0 18 1.00
Ph7 72 73 0 18 1.00
Ph8 65 66 7 25 0.78
Ph9 66 64 6 27 0.82
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CONCLUSION

In this study, a 3D pharmacophore approach was combined
with a statistical analysis methodology to develop a model
that differentiates Pgp substrates from nonsubstrates. Instead
of merely estimating the statistical significance of pharam-
cophores, permutations of activity classes of compounds were
utilized to compute the probability of called-by-chance
pharmacophores, and further to determine the optimal size
of the pharmacophore ensemble. The analysis revealed that
hydrogen-bond acceptors, aromatic rings, and hydrophobic
groups are essential features for substrate activity and that a
positive ionizable feature can also play a distinct role. A
simple and characteristic classification tree that comprises
only nine unique pharamcophores was developed from the
optimal ensemble of pharmacophores and achieved an overall
success rate of 87.7% for the training set and 87.6% for the
independent test set. In addition, the nine pharmacophores
from the classification tree also performed well individually
in identifying Pgp substrates. Furthermore, the Pgp model
has also demonstrated in-house success. A few hundred
compounds from more than 10 internal projects were
evaluated by the model, and 82% of the compounds flagged
for Pgp activity were confirmed in eitherin Vitro or in ViVo
assays.44

The Pgp pharmacophore model developed here exhibits a
particularly high degree of accuracy. Moreover, the model
also performs well on the independent internal data set,
further supporting the robust nature of the methodology. We
speculate that the exhaustive enumeration of the four-point
pharmacophore hypotheses and the robustness of the SAP
method are pivotal to success. The principle of the approach
is general and can be applicable to multiclass classification
as well as a regression analysis of quantitative targets such
as IC50 assays or affinity measurements of ligand-receptor
binding.

ACKNOWLEDGMENT

The authors thank Dr. Yaxiong Sun for his valuable
discussion on model development; gratefully acknowledge
Drs. Nigel Walker, Julio Medina, and Steve Young for their
critical reading and comments on the manuscript; and thank
our colleagues Dr. Zheng Pan, Epic Ding, Jane Liu, and
Walter Pan for their enormous support.

Supporting Information Available: The overlapping
percentage of a significant pharmacophore ensemble obtained
from information content theory versus from SAP analysis was
plotted versus the ensemble size (Supplementary Figure A).
The training set, compound names, and their actual classifica-
tion status and predicted status of Pgp substrate (Supplemen-
tary Table A). The test set, compound names, predicted status,
and experiment-inferred status of Pgp substrate (Supplemen-
tary Table B). Chemical features and spatial arrangements of
598 significant pharmacophores (Supplementary Table C).
This material is available free of charge via the Internet at
http://pubs.acs.org.

REFERENCES AND NOTES

(1) Seelig, A.; Landwojtowicz, E.; Fisher, H.; Blatter, X. L. Towards
P-glycoprotein structure-activity relationships. InIn drug bioaVail-
ability/estimation of solubility, permeability and absorption; Water-
beemd, L. a. A., Ed.; Wiley/VCH: Weinheim, Germany, 2003; pp
461-492.

(2) Stouch, T. R.; Gudmundsson, O. Progress in understanding the
structure-activity relationships of P-glycoprotein.AdV. Drug DeliVery
ReV. 2002, 54, 315-328.

(3) Zhang, Y.; Bachmeier, C.; Miller, D. W. In vitro and in vivo models
for assessing drug efflux transporter activity.AdV. Drug DeliVery ReV.
2003, 55, 31-51.

(4) Loscher, W.; Potschka, H. Drug resistance in brain diseases and the
role of drug efflux transporters.Nat. ReV. Neurosci.2005, 6, 591-
602.

(5) Cordon-Cardo, C.; O’Brien, J. P.; Boccia, J.; Casals, D.; Bertino, J.
R.; Melamed, M. R. Expression of the multidrug resistance gene
product (P-glycoprotein) in human normal and tumor tissues.J.
Histochem. Cytochem.1990, 38, 1277-1287.

(6) Polli, J. W.; Wring, S. A.; Humphreys, J. E.; Huang, L.; Morgan, J.
B.; Webster, L. O.; Serabjit-Singh, C. S. Rational use of in vitro
P-glycoprotein assays in drug discovery.J. Pharmacol. Exp. Ther.
2001, 299, 620-628.

(7) Osterberg, T.; Norinder, U. Theoretical calculation and prediction of
P-glycoprotein-interacting drugs using MolSurf parametrization and
PLS statistics.Eur. J. Pharm. Sci.2000, 10, 295-303.

(8) Ekins, S.; Kim, R. B.; Leake, B. F.; Dantzig, A. H.; Schuetz, E. G.;
Lan, L. B.; Yasuda, K.; Shepard, R. L.; Winter, M. A.; Schuetz, J.
D.; Wikel, J. H.; Wrighton, S. A. Three-dimensional quantitative
structure-activity relationships of inhibitors of P-glycoprotein.Mol.
Pharmacol.2002, 61, 964-973.

(9) Ekins, S.; Kim, R. B.; Leake, B. F.; Dantzig, A. H.; Schuetz, E. G.;
Lan, L. B.; Yasuda, K.; Shepard, R. L.; Winter, M. A.; Schuetz, J.
D.; Wikel, J. H.; Wrighton, S. A. Application of three-dimensional
quantitative structure-activity relationships of P-glycoprotein inhibitors
and substrates.Mol. Pharmacol.2002, 61, 974-981.

(10) Gombar, V. K.; Polli, J. W.; Humphreys, J. E.; Wring, S. A.; Serabjit-
Singh, C. S. Predicting P-glycoprotein substrates by a quantitative
structure-activity relationship model.J. Pharm. Sci.2004, 93, 957-
968.

(11) Pearce, H. L.; Safa, A. R.; Bach, N. J.; Winter, M. A.; Cirtain, M. C.;
Beck, W. T. Essential features of the P-glycoprotein pharmacophore
as defined by a series of reserpine analogs that modulate multidrug
resistance.Proc. Natl. Acad. Sci. U.S.A.1989, 86, 5128-5132.

(12) Penzotti, J. E.; Lamb, M. L.; Evensen, E.; Grootenhuis, P. D. A
computational ensemble pharmacophore model for identifying sub-
strates of P-glycoprotein.J. Med. Chem.2002, 45, 1737-1740.

(13) Seelig, A. A general pattern for substrate recognition by P-glycoprotein.
Eur. J. Biochem.1998, 251, 252-261.

(14) Raub, T. J. P-glycoprotein recognition of substrates and circumvention
through rational drug design.Mol. Pharm.2006, 3, 3-25.

(15) Crivori, P.; Reinach, B.; Pezzetta, D.; Poggesi, I. Computational models
for identifying potential P-glycoprotein substrates and inhibitors.Mol.
Pharm.2006, 3, 33-44.

(16) Catalyst, version 4.9; Accelrys Software Inc.: San Diego, CA, 2005.
(17) de Cerqueira Lima, P.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Tropsha,

A. Combinatorial QSAR modeling of P-glycoprotein substrates.J.
Chem. Inf. Model.2006, 46, 1245-1254.

(18) Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song, Q.
Boosting: an ensemble learning tool for compound classification and
QSAR modeling.J. Chem. Inf. Model.2005, 45, 786-799.

(19) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.;
Labaudiniere, R. F. New 4-point pharmacophore method for molecular
similarity and diversity applications: overview of the method and
applications, including a novel approach to the design of combinatorial
libraries containing privileged substructures.J. Med. Chem.1999, 42,
3251-3264.

(20) Bradley, E. K.; Beroza, P.; Penzotti, J. E.; Grootenhuis, P. D.;
Spellmeyer, D. C.; Miller, J. L. A rapid computational method for
lead evolution: description and application to alpha(1)-adrenergic
antagonists.J. Med. Chem.2000, 43, 2770-2774.

(21) Kurogi, Y.; Guner, O. F. Pharmacophore modeling and three-
dimensional database searching for drug design using catalyst.Curr.
Med. Chem.2001, 8, 1035-1055.

(22) Mahar Doan, K. M.; Humphreys, J. E.; Webster, L. O.; Wring, S. A.;
Shampine, L. J.; Serabjit-Singh, C. J.; Adkison, K. K.; Polli, J. W.
Passive permeability and P-glycoprotein-mediated efflux differentiate
central nervous system (CNS) and non-CNS marketed drugs.J.
Pharmacol. Exp. Ther.2002, 303, 1029-1037.

(23) Pearlman, R. S. Rapid generation of high quality approximate
3-dimension molecule structures.Chem. Des. Auto. News1987, 2.

(24) Derwent World Drug Index. http://www.derwent.com (accessed Mar
2005).

(25) Smellie, A.; Teig, S. L.; Towbin, P. Poling: promoting conformational
coverage.J. Comput. Chem.1995, 16, 171-187.

(26) Cerius2, version 4.11; Accelrys Software Inc.: San Diego, CA, 2006.
(27) Jones, G.; Willett, P.; Glen, R. C. A genetic algorithm for flexible

molecular overlay and pharmacophore elucidation.J. Comput.-Aided
Mol. Des.1995, 9, 532-549.

PHARMACOPHORE MODELS FORPGP SUBSTRATES J. Chem. Inf. Model., Vol. 47, No. 6, 20072437



(28) Sybyl, version 7.3.1; Tripos Inc.: St. Louis, MO, 2006.
(29) Tusher, V. G.; Tibshirani, R.; Chu, G. Significance analysis of

microarrays applied to the ionizing radiation response.Proc. Natl.
Acad. Sci. U.S.A.2001, 98, 5116-5121.

(30) Shapiro, A. B.; Fox, K.; Lam, P.; Ling, V. Stimulation, of P-
glycoprotein-mediated, drug transport by prazosin and progesterone.
Evidence for a third drug-binding site.Eur. J. Biochem.1999, 259,
841-850.

(31) Shapiro, A. B.; Ling, V. Positively cooperative sites for drug transport
by P-glycoprotein with distinct drug specificities.Eur. J. Biochem.
1997, 250, 130-137.

(32) Martin, C.; Berridge, G.; Higgins, C. F.; Mistry, P.; Charlton, P.;
Callaghan, R. Communication between multiple drug binding sites
on P-glycoprotein.Mol. Pharmacol.2000, 58, 624-632.

(33) Raviv, Y.; Pollard, H. B.; Bruggemann, E. P.; Pastan, I.; Gottesman,
M. M. Photosensitized labeling of a functional multidrug transporter
in living drug-resistant tumor cells.J. Biol. Chem.1990, 265 (7),
3975-80.

(34) R-project. http://www.r-project.org (accessed Mar 2005).
(35) Breiman, L.; Friedman, J.; Olshen, R. A.; Stone, C. J.Classification

and Regression Trees; Wadsworth: Belmont, CA, 1983.
(36) These six compounds were identified as doxorubicin, indinavir,

mitoxantrone, perphenazine, saquinavir, and taxol, each related to a
distinct training molecule.

(37) Ecker, G.; Huber, M.; Schmid, D.; Chiba, P. The importance of a
nitrogen atom in modulators of multidrug resistance.Mol. Pharmacol.
1999, 56, 791-796.

(38) Chiba, P.; Ecker, G.; Schmid, D.; Drach, J.; Tell, B.; Goldenberg, S.;
Gekeler, V. Structural requirements for activity of propafenone-type

modulators in P-glycoprotein-mediated multidrug resistance.Mol.
Pharmacol.1996, 49, 1122-1130.

(39) Rolan, P. E.; Martin, G. R. Zolmitriptan: a new acute treatment for
migraine.Expert Opin. InVest. Drugs1998, 7, 633-652.

(40) Calson, S. E. Presentation: Migraine. http://www.npgs.org/downloads/
Migraine.ppt (accessed Sep 2007).

(41) Humphrey, P. P.; Feniuk, W.; Marriott, A. S.; Tanner, R. J.; Jackson,
M. R.; Tucker, M. L. Preclinical studies on the anti-migraine drug,
sumatriptan.Eur. Neurol.1991, 31, 282-290.

(42) Srinivasan, J.; Castellino, A.; Bradley, E. K.; Eksterowicz, J. E.;
Grootenhuis, P. D.; Putta, S.; Stanton, R. V. Evaluation of a novel
shape-based computational filter for lead evolution: application to
thrombin inhibitors.J. Med. Chem.2002, 45, 2494-2500.

(43) As used in ref 42, the information content,I, is calculated with the
following equation: I ) -1/N(Na log{Na}/{N} + Ni log{Ni}/{N}) +
Np/N(pap log pap + pip log pip) + Nn/N(pan log pan + pin log pin) where
N is the total number of compounds (substrates and nonsubstrates);
Na is the total number of substrates;pap andpip are the fractions of
substrates and nonsubstrates, respectively, that have positive predictions
(Np); Ni is the total number of nonsubstrates; andpan andpin are the
fractions of substrates and nonsubstrates, respectively, that have
negative predictions (Nn). There are two terms in the information
content equation: the first represents the uncertainty as to whether a
molecule is a substrate, and the second accounts for the uncertainty
as to whether a molecule is a substrate given whether it fits
pharmacophore model.

(44) The true positive rate for Pgp substrates is 87%, and the true negative
rate for Pgp nonsubstrate is 70%.

CI700284P

2438 J. Chem. Inf. Model., Vol. 47, No. 6, 2007 LI ET AL.


