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Background: In order to proactively manage congestive heart failure (CHF) patients, an effective CHF case
finding algorithm is required to process both structured and unstructured electronic medical records
(EMR) to allow complementary and cost-efficient identification of CHF patients.

Methods and results: We set to identify CHF cases from both EMR codified and natural language process-
ing (NLP) found cases. Using narrative clinical notes from all Maine Health Information Exchange (HIE)
patients, the NLP case finding algorithm was retrospectively (July 1, 2012-June 30, 2013) developed with
arandom subset of HIE associated facilities, and blind-tested with the remaining facilities. The NLP based
method was integrated into a live HIE population exploration system and validated prospectively (July
1, 2013-June 30, 2014). Total of 18,295 codified CHF patients were included in Maine HIE. Among the
253,803 subjects without CHF codings, our case finding algorithm prospectively identified 2411 uncodi-
fied CHF cases. The positive predictive value (PPV) is 0.914, and 70.1% of these 2411 cases were found to
be with CHF histories in the clinical notes.

Conclusions: A CHF case finding algorithm was developed, tested and prospectively validated. The suc-
cessful integration of the CHF case findings algorithm into the Maine HIE live system is expected to
improve the Maine CHF care.
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1. Introduction

The US Centers for Disease Control and Prevention (CDC) has
reported that congestive heart failure (CHF) remains a principle
cause of overall hospitalization and its prevalence has not changed
significantly between 2000 and 2010 [1]. The estimated heart fail-
ure related mortality is approximately 287,000 people per year
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[2]. In aggregate, heart failure imparts an enormous yearly cost of
approximately $31 billion dollars to the US healthcare system [3].

The Centers for Medicare and Medicaid Services (CMS) has pro-
posed CHF readmission rate as a measure of healthcare quality and
target for cost control [4]. Many CHF hospitalizations are considered
to be preventable if patients were to receive timely and appropriate
medical care [5]. Therefore, an effective real-time analytical solu-
tion to comprehensively identify CHF cases is needed to help guide
targeted interventions and appropriate resource allocation [6].

A traditional method for CHF case finding is based on clinical
coding [7] that largely depends on the availability of structured
electronic medical record (EMR) datasets. However, this method
is flawed resulting in a significant under-reporting of the targeted
population [8]. One solution is to find those uncodified CHFs by
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manual review of the narrative EMR clinical notes. However, high
labor costs and latency prohibit the practicality of this approach.
Therefore, processing both structured and unstructured data for
CHF case finding can provide a complementary and cost-efficient
way to identify patients and apply targeted care.

Over the last decade, use of Natural Language Processing (NLP)
to analyze the EMR narrative texts has been largely confined to clin-
ical research focusing on information extraction for the purpose of
EMR enrichment and decision support [10-12]. Alternatively, the
applications of NLP to clinical notes, e.g., identification of pneumo-
nia [13], diabetes [14], and CHF [15,16], have shown promise as a
case finding method. The reported NLP based case finding studies
to date have achieved good F-measures [9]. However, these stud-
ies utilized relatively small sample size or focused on specific types
of clinical notes. The challenge in the current study was to execute
CHF case finding utilizing a statewide patient population, where the
class distribution is highly imbalanced. Unstructured notes from
multiple facilities across the Maine State were found with known
narrative expression variability thus impacting information com-
prehensiveness. To deal with this challenge, the algorithm should
have: (1) a comprehensive knowledge base to capture the accumu-
lated domain knowledge from the targeted patient population; (2)
a rigorous data model is needed to encompass the unstructured
clinical notes of various formats across different facilities; (3) a
robust and scalable analytical pipeline is needed to process the vast
amount of EMR notes across statewide facilities.

In this study, we set to develop and integrate a real-time NLP-
based CHF case finding algorithm into the Maine HIE care flow

(Fig. 1).
2. Methods
2.1. Ethics statements

No PHI was released for the purpose of this clinical research.
Because this study analyzed de-identified data, the Stanford Uni-
versity Institutional Review Board considered it exempt (October
16, 2014).

2.2. Data source

The health information exchange in Maine (HealthInfoNet, HIN)
isanindependent nonprofit organization initiated in 2009 that con-
tains records for nearly the entire population of the state of Maine
residents and is connected to the majority of health care facilities
in the state. There are currently 35 hospitals, 384 federally quali-
fied health centers, and over 400 ambulatory practices connected
to the Maine HIE. HIN maintains an opt-out consent process with
a patient opt-out rate of slightly over 1%; and certain behavioral
health and HIV related information is excluded from the database as
required by Maine law. To identify the CHF cohort from a statewide
population, all categories of clinical notes from the connected facil-
ities were included. There were 2,139,299 notes in the Maine HIE
EMR database covering a period from July 1, 2012 to June 30,
2014, with more than 100 different types of clinical reports includ-
ing history/physical reports, discharge summaries and emergency
reports.

2.3. Experimental design (Fig. 2)

CHF cases were identified utilizing the Clinical Classification
Software (CCS) single-level diagnosing group (#108 Congestive
heart failure; nonhypertensive) [17], and the International Classifi-
cation of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
codes including 398.91, 428.0, 428.1, 428.20, 428.21, 428.22,
428.23, 428.30, 428.31, 428.32, 428.33, 428.40, 428.41, 428.42,

428.43, and 428.9. The CHF case finding algorithm consisted of two
phases: (1) the EMR database analyses of patient encounters with
the CHF ICD9 codes; (2) NLP-based case finding analyses based on
our knowledge base and de-noised dictionary (see below). Total of
8 datasets as outlined in Fig. 2 were utilized throughout this study:
retrospective A and A1 to A4, prospective B and B1 to B2 datasets.
The NLP engine was trained with data set A1, analyzed with dataset
A2, finalized with manually chart-reviewed gold standard dataset
A3, and evaluated with manually chart-reviewed gold standard
dataset A4 in aretrospective timeframe from July 1,2012 toJune 30,
2013. Our case finding algorithm was prospectively deployed to the
HIE live system (Supplementary Table 1). The algorithm’s prospec-
tive performance was gauged using another chart-reviewed gold
standard dataset B1 of uncoded encounters within the prospec-
tive testing period from July 1, 2013 to June 30, 2014. The clinical
notes of the NLP identified cases were further profiled to explore
unique clinical patterns associated with these previously uncoded
but genuine CHF cases.

2.4. Workflow to construct the gold standard dataset A3, A4 and
B1

Clinical notes of samples were randomly selected and manually
reviewed by two physician curators. When there was a disagree-
ment on diagnosis that could not be resolved by the curators, the
sample was excluded. The resultant datasets was used as the gold
standard to validate our NLP case finding method.

2.5. NLP knowledge base

The developed knowledge base has two modules: (1) a con-
trolled vocabulary consisting of CHF related clinical terms; and (2)
the extracted rules combining vital signs and comorbidities in the
clinical notes (Supplementary Fig. 1).

The clinical terms in our NLP knowledge base were derived from
the following sources: (1) ICD-9-CM code string descriptions and
corresponding synonyms; (2) the comprehensive clinical terminol-
ogy within the Systematized Nomenclature of Medicine—Clinical
Terms (SNOMED CT) [18]; (3) a mapping between ICD-9-CM and
SNOMED CT proposed by the US National Library of Medicine (NLM)
[19]; and (4) a controlled vocabulary thesaurus named Medical Sub-
ject Headings (MeSH) used by NLM for article indexing [20]. These
clinical terms in the knowledge base were further tokenized, com-
bined and filtered to derive our controlled vocabulary of single and
dual tokens. If those controlled vocabularies contain stop words,
e.g. “the”, “a”, “of”, provided by the text mining (tm) package [21],
they were removed. A total of 148 final NLP terms were compiled,
and 52/148 were found to be significantly (Mann-Whitney test P
value <0.05) associated with CHF.

The vital sign/comorbidity, including BMI, CHF standard mark-
ers, obesity, fasting blood glucose level, smoking history, and
alcohol use status, can provide important cues of being with CHF. To
compile the knowledge base that enabled structured information to
be derived, a series of regular expressions representing the rules to
enable information unification and design of different feature cat-
egories were compiled. As an example, BMI was presented directly
in some notes, but could also be calculated based on height and
weight. Therefore, BMI information was unified from two sources
and normalized into four categories: underweight, normal, over-
weight and obesity according to the BMI classification of the World
Health Organization (WHO) [22]. The blood pressure and fasting
blood glucose levels were classified according to related standards
from American Heart Association and American Diabetes Associa-
tion, respectively [23,24].
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Fig. 1. A schematic of the NLP based algorithm integrated to the Maine HIE workflow to allow statewide CHF case finding and monitoring.
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Fig. 2. Experimental design to train, validate and live system production of the NLP based CHF case finding algorithm. There were total of 8 datasets constructed through
the retrospective and prospective analyses. Three manual-reviewed gold standard datasets, two in retrospective and one in prospective analyses, were utilized to gauge the

model performance.

2.6. Clinical note preprocessing (Supplementary Fig. 2)

The clinical notes from different facilities were either in plain
text or HTML format. To standardize, all HTML data were converted
into plain text using XPath based matching methods implemented
with the XML package [25].

To improve the NLP specificity, annotated terms associated with
negation and family history were removed from notes. One method
was to remove the words in a fixed interval centering on a nega-
tion or family history word [26]. This method, however, required
manually defined parameters and is not adaptive. The following
three steps were executed: (1) The text was collapsed into disjoint

segments, which can be paragraphs, sentences or lines. If a para-
graph (sentence) satisfied a criterion of being a segment, it would
be regarded as one segment without any further decomposition.
Otherwise, the paragraph (sentence) was divided into sentences
(lines). The criterion was developed based on the segment length
and the number of newline characters. The part-of-speech was
annotated and referred for sentence boundary detection against
the confusion between period and decimal point using openNLP
[27].(2) The de-noise dictionary of negation and family history was
developed iteratively on the notes from retrospective cohort with
NegEx lexicon and family member vocabulary as seeds [28,29]. (3)
In each clinical note the segments containing any entries in the
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de-noise dictionary were removed. The remaining segments were
re-combined as a new clinical note, which was expected to have no
negation and family history in its content.

2.7. Retrospective datasets

There were 1,257,952 clinical notes included in the retrospective
cohort (July 1, 2012-June 30, 2013). All the notes were randomly
partitioned, according to the patient associated clinical facilities,
into two subsets: one for training, multidimensional scaling (MDS)
plot and cutoff point finding (N=228,220, 20 facilities), and the
other for blind testing (N=130,630, 15 facilities). In the subsets,
the notes of the same patient were merged as one note, resulting in
patient level subsets. Within the training, MDS plot and cutoff point
finding subset, patients (N=5134)with codified CHF diagnoses, and
an equal number of uncodified patients (N=5134), were randomly
sampled to construct the training sub-cohort for model training
(Fig. 2, dataset A1). Patients (N =500) with codified CHF diagnoses
and uncodified patients (N=500) were randomly sampled as MDS
plot sub-cohort (Fig. 2, dataset A2). In the remaining uncodified
patients, a gold standard dataset was constructed through manual
chart review by randomly selecting 100 positive (CHF cases) and
500 negative (non CHF cases) to build the cutoff-point finding sub-
cohort (Fig. 2, dataset A3). 100 positive and 500 negative patients
were randomly sampled from the blind testing subset to construct
the blind testing sub-cohort (Fig. 2, dataset A4).

2.7. Model development

All the features (both from the structured database and unstruc-
tured clinical notes) related to a patient were concatenated into a
feature vector denoted as f. The identification of CHF was stated as
a maximum posterior probability (MAP) estimate problem:

CHF = agrmaxP (CHF|f)
CHF

where CHF was a binary random variable indicating whether the
sample belonged to CHF cases (CHF=1). To take diagnosis codes
into consideration, the binary variable ICD was introduced to indi-
cate whether a patient was codified (ICD=1). By inserting ICD into
the posterior and then applying the Bayesian rule, we have the
decomposition:

P(CHF|f) = P(CHF|ICD = 1, f)P(ICD = 1|f) + P (CHF|ICD = 0, f)
x P(ICD = 0[f)

Since the assignment of diagnosis code was independent to the
extracted feature, the model was simplified to:

P(CHF|f) = P(CHF|ICD = 1, f)P(ICD = 1) + P (CHF|ICD = 0, f)
x P(ICD = 0)

The first term on the right side determines the probability of
CHF for a codified patient while the second term for an uncodi-
fied patient. As the coding information was known, we had two
branches to obtain the posterior.

P (CHF|ICD = 1, f) codified patient

P (CHF|f) = { ] .
P (CHF|ICD = 0, f) uncodified patient

Our hypothesis was that the great majority of the patients with-

out CHF codes were non-CHF cases while CHF codified patients

were most likely CHF cases. This led to our class labeling method:

(1) when a patient was codified, he/she should be assumed as a CHF
case;

P(CHF=1|f) = P(CHF=1]ICD = 1, f) = 1

(2) when a patient was not codified, a model T should be built to
estimate the probability.

P (CHF=1|f) = P(CHF=1]ICD = 0, f) = T(f)

For a codified patient, the inference of CHF case only required a
database query, while for uncodified patient, we applied a random
forest model [30,31] as T(f):

T() = 3 Zt(f)

where t, was the nth decision tree in the random forest.

At the perspective of hierarchical tree, the model of posterior
can be seen as a binary determined tree at the top, of which the
one child had a random forest at the bottom. The testing subjects
were partitioned according to their associated ICD9 codes at the
top level of the top determined tree. Decisions to label the uncod-
ified patients were achieved at the bottom random forest using
clinical parameters ranked by random forest importance scoring
metric [30]. Therefore, our final model encapsulated a combination
of human prior knowledge and the machine learned knowledge.

We hypothesized that uncodified but genuine CHF cases can be
found based on the similar patterns within the clinical notes of both
codified and uncodified but genuine CHFs. The model was trained
using the training sub-cohort (Fig. 2, dataset A1). The false posi-
tives found during the training process were reviewed manually,
so that (1) genuine CHF cases missing the CHF ICD-9 codes could
be revealed, and (2) confusing words and phrases related to fam-
ily history, and negation were identified. The two steps, including
training and chart review, were executed iteratively to improve our
knowledge base and fine-tune the model.

The multidimensional scaling (MDS) plots were constructed to
visualize the analysis results (Fig. 2, dataset A2) of uncodified CHF
cases (through chart review) and codified CHF case distributions.

2.8. Patient classification cutoff point determination

The receiver operating characteristic (ROC) curve analysis [32]
was used to decide the optimal binary decision cutoff point (Fig. 2,
dataset A3). Given that our algorithm assigned a classification prob-
ability to each subject, we set to find an optimal cutoff point to
achieve the maximum classification sensitivity with a predefined
positive predictive value (PPV) level of 90%. To achieve 90% PPV,
the classification specificity can be calculated through a linear for-
mula, thus forming a straight line overlaid on the ROC curve. The
combination of sensitivity and specificity in the region above the
line warranted the performance >90% PPV. Thus the cutoff point
was set at the first intersection between the line and the ROC curve
from the top to bottom.

2.9. Retrospective blind test

The model was blind tested on blind testing sub-cohort (Fig. 2,
dataset A4), in which the retrospective patients were associated
with care facilities independent from other sub-cohorts (Fig. 2,
dataset A1-A3). The blind testing results demonstrated the model
performance on an independent patient cohort, indicating that the
knowledge from some hospitals could be leveraged to allow the
prediction in others [33].
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2.10. Prospective validation

Our NLP-based CHF case finding algorithm was integrated to
the live HIE population exploration dashboard system. Therefore, a
prospective validation of our NLP method was feasible.

The clinical notes (N = 881,347, dataset B) from patients between
July 1, 2013 and June 30, 2014 were analyzed to find additional
CHF cases. The algorithm performance was validated using an inde-
pendent gold standard dataset of patients randomly selected from
the prospective cohort. This gold dataset included chart-reviewed
clinical notes of 1200 uncodified patients (200 positive and 1000
negative CHF subjects, Fig. 2, dataset B1). The prospective classifica-
tion performance was evaluated using PPV, sensitivity, specificity,
NPV (negative predictive value) and ROC AUC (area under curve).
The senior population of age 65+ was analyzed (Fig. 2, dataset
B2).

The prospective outcomes were visualized in groups of true pos-
itive, false positive, false negative and true negative. To understand
the unique patterns associated with the false positive and true pos-
itive samples, these patients’ notes were analyzed.

2.11. Learning transfer

In the retrospective study, we had two gold standard datasets,
one for cutoff point finding and the other for blind-testing
purposes. The cutoff point finding dataset was constructed by
the notes from the same care facilities as the training dataset.
The blind-testing dataset, on the other hand, was constructed
by the notes from other care facilities independent from the
ones used in the training and cutoff point finding dataset. The
blind test demonstrated results similar to that in either the
training (the notes of which was collected from different facil-
ities from testing) or the prospective validation (the notes of
which was collected from all facilities), indicating that the model
learned from one group of facilities can be transferred to oth-
ers.

3. Results
3.1. CHF discriminant variables

A total of 32CHF discriminant features were selected in the final
model, including demographics (2), vital signs (2), comorbidity (4),
clinical history (1), and NLP extracted clinical terms (23) (Fig. 3). The
top four features, “heart failure”, “congestive heart”, “congestive
heart failure” and “chf”, were directly related to the CHF disease.
“Age” ranked fourth, consistent with the notion that CHF hospi-
talization rate correlates significantly with patient aging [1]. The
remaining discriminant risk factors included “glucose” and “blood
pressure” (a proxy to the diabetes and hypertension comorbidi-
ties), smoking and alcohol histories, as well as BMI and “obesity”,
reflecting patient current physiological status in line with previous
findings.

3.2. CHF case-finding algorithm development

With the CHF codified (positive) and uncodified (negative)
patients’ clinical note features, a binary classifier was developed
for CHF case finding. A MDS plot was constructed to visualize the
classification performance (Fig. 4), and 6/500 uncodified patients
were classified as CHF cases. Specifically, the ratio (6/500, 1.2%)
was the number of uncodified CHF cases, identified by the algo-
rithm, over the total number of patients without CHF ICD9 codes
when we sampled the training database. Thus, ratio of 1.2% could
be very small due to the two possible reasons: (1) most of the true

positive CHF cases had been codified; (2) CHF population preva-
lence is low. A close examination of other diagnosis (#2 and #5)
and past histories (#1, #3, #4 and #6) in their clinical notes, how-
ever, revealed that these “false positive” patients were genuine CHF
cases. Such results indicated: (1) our model effectively separated
codified CHF patients from uncodified ones; (2) our initial hypoth-
esis, that uncodified CHF cases can be identified by NLP profiling of
the clinical notes, was validated.

3.3. Patient classification cutoff point determination

The decision tree based classification scores were evaluated to
achieve the maximum sensitivity while the PPV was higher than
90% (Fig. 5). With this cutoff value of the classification probabili-
ties set as 0.864, the continuous classification scoring outputs were
used to reach a binary decision to determine the genuine CHF cases.

3.4. Inclusion of CHF standard markers

Due to the high availability of blood pressure information in
the clinical notes, our study subjects were categorized as normal
blood pressure, pre-hypertension, and hypertension. The addition
of these features improved our algorithm performance (F-measure)
from 0.729 to 0.753 in the prospective analysis.

In addition, other CHF makers including brain natriuretic pep-
tide (BNP) [34], coronary artery disease (CAD), ejection fraction
(EF) [35], pulmonary edema, pleural effusion, dyspnea on exer-
tion, edema, exercise intolerance, paroxysmal nocturnal dyspnea
or elevated jugular venous pressure are very sparse in either the
codified EMR data or the clinical notes, limiting their contribu-
tions. The inclusion of additional CHF markers did not significantly
improve our CHF case finding algorithm. (Supplementary Fig.
3).

3.5. Retrospective blind testing

As shown in Fig. 6A and B summarizing the retrospective blind
testing, our NLP analytics achieved a PPV of 0.920 (69/75), sensitiv-
ity 0f0.690 (69/100), specificity of 0.988 (494/500) and NPV of 0.941
(494/525). The ROC AUC score was 0.886. The F-measure was 0.789
(It was computed using PPV and sensitivity which were equivalent
to precision and recall). These results demonstrated the learning
can be transferred to different hospitals.

3.6. Case finding algorithm performance evaluation

Since the algorithm was deployed to allow real time CHF case
finding, a prospective validation was feasible. We evaluated the
method performance (Table 1) using retrospective MDS plot sub-
cohort (Fig. 2, dataset A2), prospective cohort (Fig. 2, dataset B),
and manual chart-reviewed cohort (Fig. 2, dataset B1), and prospec-
tive senior population (Fig. 2, dataset B2). In MDS plot sub-cohort,
there were 500 codified and 500 uncodified patients. Among the
uncodified patients, 6 patients were found by NLP, resulting in a
percentage of 1.2%. In the total prospective population (dataset
B), there were 18,295 codified CHF patients, and 253,804 patients
without CHF codings. Our NLP case finding algorithm asserted 2411
uncodified CHF cases, resulting in percentages of NLP found uncod-
ified CHF patients of 0.95%.

In the total prospective senior population, there were 14,749
codified CHF patients, and 73,883 patients without CHF codings.
Our NLP analysis (Table 1) found additional 1814 uncodified CHF
cases, which is 2.4% of the 73,883 patients with no CHF codings.
Our results concluded that 80.6% codified and 75.2% NLP-revealed
uncodified CHF cases were senior patients. The prospective per-
formance, summarized in Fig. 6A and B, of the algorithm was
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with retrospective data set A1 (as shown in Fig. 1).
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Fig.4. The multidimensional scaling (MDS) plots of the training result. This analysis is to detect meaningful underlying dimensions, e.g., #1 and #2, that allow the explanation
of the observed similarities (distances) between the investigated subjects. The axes of the MDS plots represent no real sizes and thus were marked as Dimension 1 and
Dimension 2 without units. The red dots and blue triangles, indicating codified and uncodified patients, were clearly separated. The “false positives” were circled in the plot.
Manual chart review confirmed true positive CHF cases. The plot was derived with retrospective data set A2 (as shown in Fig. 1). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
NLP results from the test/validation analyses and the live system.

Dataset ICD9 coded (+) ICD9 coded (—) NLP found uncodified CHFs % NLP found uncodified CHFs"
Retrospective dataset A2 500 500 6 1.2%

Prospective dataset B 18,295 253,804 2,411 0.95%

Prospective dataset B2 Senior (Age 65+) 14,749 73,883 1,814 2.4%

" t-Test revealed no significant difference between the analysis results of dataset A2 and live system data set B.
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Fig. 6. The CHF case finding performance analyses. (A) The contingency tables on blind test sub-cohort and prospective cohort. (B) The PPV, sensitivity, specificity and NPV
values on the retrospective blind test sub-cohort and prospective cohort. The model was evaluated with retrospective gold standard data set A4 (as shown in Fig. 1).

validated by chart review of a randomly selected uncodified sub-
cohort (Fig. 2, dataset B1). The PPV was 0.914 (128/140), which
was within the 95% confidence interval of the retrospective blind-
testing PPV (0.836-0.963). The sensitivity was 0.640 (128/200). The
specificity, NPV and AUC were 0.988, 0.932 and 0.919, respectively.
The prospective F-measure was 0.753.

Close examination (Fig. 7) of the prospective uncodified patient
validations categorized the NLP false positives (N =12): risks of CHF
(N=2, Supplementary Fig. 4 labeled #1 patient), ambiguity of pro-
nouns (N=3, Supplementary Fig. 4 labeled #2 patient), mistyped
information (N=2, Supplementary Fig. 4 labeled #3 patient) and
undetermined CHF (N =5, Supplementary Fig. 4 labeled #4 patient).
Integration of correction plans of these error sources into our
knowledge base will iteratively improve our NLP analytics to
deliver solutions with enhanced performance.

4. Discussion

In this study, we retrospectively developed and prospectively
validated a NLP based CHF case finding algorithm. Clinical notes
from a specific set of randomly chosen hospitals were profiled and
the learned results were successfully reproduced in other facili-
ties. In the retrospective training set, the algorithm found 6CHF
cases from 500 uncodified patients (Table 1). In prospective cohort,
the algorithm found 2411 CHF cases from 253,804 cases without
CHF codings. The two results (6/500 and 2411/253,804, or 1.20%
and 0.95%) were not significantly different (t-test P-value 0.61).
The high P-value, together with the result obtained from the gold
standard datasets (that performance in prospective gold standard
dataset was within the 95% CI of that in the retrospective gold
standard dataset), demonstrated that the proposed case finding
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algorithm yielded the consistent performances in both retrospec-
tive and prospective cohorts. These findings strongly endorsed our
hypothesis that uncodified but genuine CHF cases can be revealed
based on the similar narrative text patterns within the clinical notes
of both codified and uncodified but genuine CHFs.

Compared with previous studies: (1) A naive Bayes model using
full text features with a F-measure of 0.6661°, (2) A naive Bayes
model using both full text features and clinical terms with a F-
measure of 0.63716, and (3) A perceptron model using full text
features and clinical terms with a F-measure of 0.666, our algo-
rithm outperformed these previous results with a F-measure of
0.753. This success was attributable to our comprehensive knowl-
edge base developed using all hospital EMR contents of the State
of Maine as well as the use of standard clinical terminologies and
synonyms that provided the capacity to reduce the disturbance
from negation and family history. The retrospective analysis and
prospective integration of the NLP process to the HIE workflow
facilitated the close to real time iterative optimization in further
support of the observed superior performance.

Our CHF case-finding algorithm demonstrated that the vast
amount of narrative clinical note information could be effectively
utilized to construct disease cohorts, supplementing the codified
EMR dataset. More importantly, the developed case finding frame-
work, of knowledge base as well as preprocessing and statistical
modeling analyses, can be repeated as a generalized NLP solution
to construct any targeted disease cohort for population exploration.
Specifically, by constructing other disease NLP knowledge bases in
similar fashion as this study, our approach can be applied to case
findings of other disease groups.

Standard CHF marker information, including CAD, BNP val-
ues, ejection fraction, pulmonary edema, pleural effusion, were
extracted and explored. Most of these clinical parameters are very
sparse in either the codified EMR data or the clinical notes, there-
fore, are of limited utility for our case finding analytics. Inclusion
of these parameters did not add any value to the current model in
CHF case finding, and the F-score was reduced to 0.641 (PPV 0.893
and sensitivity of 0.500) comparing to the current model described
in this work. Therefore, these CHF markers were not included by
our current NLP workflow. Future effort to comprehensively collect
these features might improve our CHF case findings.

Our case finding algorithm aims to be part of the live HIE sys-
tem to construct CHF cohort. The engine has the capacity to analyze,
within 12-h time frame, 881,347 notes of 2014 notes in the Maine
HIE. Although the analytics utilized ICD codes which are often
assigned post discharge, automated tracking and update of CHF
patients’ registry records can help the health care providers, under
the accountable care organization (ACO) setting, to provide tar-
geted care, therefore, allowing proactive CHF patient intervention.

Among the uncodified CHF cases, approximately 70% of the
patients had CHF histories described in the clinical notes. Those
patients, however, were not assigned with CHF diagnosis codes
since CHF diagnoses might not be the clinical focus of relevant
encounters in the database [36]. This observation indicated that
under current coding guidelines, those patients missing CHF cod-
ings would not benefit from CHF targeted healthcare programs. In
addition, the underlying issues, of both the apparent failure of the
conventional coding methods and the flaws of the current coding
system, need to be explored so that electronic solutions may be
formulated.

Compared to patients currently identified as having CHF, uncod-
ified patients with CHF histories may not have current acute
symptoms or be taking any CHF related medications. This likely
leads to a low level of awareness by both patients and care
providers. However, these patients shall still possess risk factors
that should be reviewed at a regular interval. Our CHF case find-
ing algorithm presents an opportunity for individual providers to
identify previously uncodified patients for proactive care inter-
ventions. Healthcare providers may be able to better manage all
CHF patients through medication compliance, medication related
adverse events, diet and exercise programs, along with the timely
management of any emerging disease risks. As aresult, these efforts
may further reduce preventable CHF admission and readmission
rates [5], and ultimately improve overall healthcare outcomes and
patient quality of life.

5. Conclusion

ANLP based CHF case finding algorithm was developed and inte-
grated in HIE live system across all demographic groups in the State
of Maine. The NLP modeling results were validated with a cohort
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from hospitals independent from the training sets, indicating the
transfer of learning that is achievable between different hospitals
and practitioners. The prospective cohort validation demonstrated
the temporal effectiveness of the developed algorithm, supporting
deployment in an existing and active HIE. Real time integration of
CHF analytics into the Maine HIE workflow may empower popula-
tion health exploration and specifically the monitoring of subjects
at risk for CHF, providing an opportunity for proactive and pre-
ventive interventions. While HIE data represents an ideal source of
clinical narrative notes for NLP analysis, operational HIEs are not
present in all States. Our NLP based CHF finding algorithm can be
applied to any clinical EMRs directly as well as private HIEs within
hospital networks. Beyond the case finding for proactive CHF care,
gaining a deeper understating of both the unique and common
attributes of various sub-groups may further facilitate overall CHF
management.
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