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Objectives To test the hypothesis that an exploratory proteomics analysis of urine proteins with subsequent
development of validated urine biomarker panels would produce molecular classifiers for both the diagnosis and
prognosis of infants with necrotizing enterocolitis (NEC).
Study designUrine sampleswere collected from 119 premature infants (85 NEC, 17 sepsis, 17 control) at the time
of initial clinical concern for disease. The urine from 59 infants was used for candidate biomarker discovery by liquid
chromatography/mass spectrometry. The remaining 60 samples were subject to enzyme-linked immunosorbent
assay for quantitative biomarker validation.
Results A panel of 7 biomarkers (alpha-2-macroglobulin-like protein 1, cluster of differentiation protein 14, cysta-
tin 3, fibrinogen alpha chain, pigment epithelium-derived factor, retinol binding protein 4, and vasolin) was identified
by liquid chromatography/mass spectrometry and subsequently validated by enzyme-linked immunosorbent
assay. These proteins were consistently found to be either up- or down-regulated depending on the presence,
absence, or severity of disease. Biomarker panel validation resulted in a receiver-operator characteristic area under
the curve of 98.2% for NEC vs sepsis and an area under the curve of 98.4% for medical NEC vs surgical NEC.
ConclusionsWe identified 7 urine proteins capable of providing highly accurate diagnostic and prognostic infor-
mation for infants with suspected NEC. This work represents a novel approach to improving the efficiency with
which we diagnose early NEC and identify those at risk for developing severe, or surgical, disease. (J Pediatr
2014;-:---).

T
he underlying etiology of necrotizing enterocolitis (NEC) remains poorly understood but is thought to be multifactorial,
involving factors inherent to the premature neonate and its environment. Specific features believed to be involved in the
development of NEC include an underdeveloped gastrointestinal mucosal barrier, immature innate and humoral immu-

nity, uncoordinated intestinal peristalsis, and pathogenic bacterial overgrowth.1 Despite many advances in neonatal intensive
care, NEC continues to be amajor source of morbidity andmortality in preterm infants. It is diagnosed in 1%-5% of all patients
in the neonatal intensive care unit, with an incidence of up to 15% reported in infants weighing less than 1500 g.2,3

NEC occurs across a spectrum of severity from a mild form that resolves with antibiotics and cessation of feedings (medical
NEC) to a progressive form that leads to intestinal perforation, peritonitis, andpotentially death (surgicalNEC).4 Approximately
20%-40%of all infants diagnosedwithNEC eventually require surgery.5 AlthoughBell’s classification scheme, first introduced in
1978,6 is useful in guiding initial treatment decisions, it does not serve as a prognostic instrument of disease progression.

Many previous attempts have been made to identify biologic markers for the early detection of NEC. Breath hydrogen levels,
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A2ML1 Alpha-2-macroglobulin-like protein
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CD14 Cluster of differentiation protein 14
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PEDF Pigment epithelium-derived factor

RET4 Retinol binding protein 4
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Methods

This was a multi-institutional, multiyear study with prospec-
tive data collection performed fromMay 1, 2007, to August 1,
2012, by trained personnel at each participating institution.
Patient contributions by institution included: Yale-New Ha-
ven Children’s Hospital (n = 42), Johns Hopkins Children’s
Center (n = 27), Texas Children’s Hospital (n = 25), Lucile
Packard Children’s Hospital (n = 18), and Children’s Hospi-
tal of Philadelphia (n = 7). Informed consent was obtained
from the parents of all enrolled subjects. This study was
approved by the human subjects’ protection program at
each participating institution.

All urine samples were collected at the time of initial clin-
ical concern for disease (NEC or sepsis), a point at which
definitive diagnosis was not able to be determined on clinical
grounds alone. Patients with a previous diagnosis of NEC or
sepsis, a history of previous abdominal surgery, or a known
congenital anomaly of the gastrointestinal tract or abdominal
wall were excluded from the study. Patient inclusion was
ultimately confirmed by the presence of signs specific for
NEC by Bell’s criteria (pneumatosis intestinalis) or, for the
sepsis group, by either positive blood cultures or a clinical
syndrome associated with a high probability of infection.
Control subjects were identified as premature infants in the
neonatal intensive care unit without known or suspected in-
flammatory disease.

The study was conducted in 2 phases. The “discovery
phase” included urine proteomics analysis by nontargeted,
liquid chromatography/mass spectrometry (LCMS) with
case and control subjects (n = 45 NEC, n = 12 sepsis, n =
2, controls).16,17 To verify the LCMS spectral counts in a
proof-of-principle experiment, the cluster of differentiation
protein 14 (CD14) LCMS analyte results were compared
with CD14 western blot analysis. For the western blot anal-
ysis, CD14 MaxPab mouse polyclonal antibody (B01; Ab-
nova, Taipei City, Taiwan) was used as the primary
antibody and a fluorescent-labeled secondary antibody
was subsequently applied. Gel band intensities were quanti-
fied using GelAnalyzer software (http://www.gelanalyzer.
com).

The “validation phase” consisted of the analysis of a sec-
ond, na€ıve patient cohort (n = 40 NEC, n = 5 sepsis, n = 15
healthy controls) for which enzyme-linked immunosorbent
assay (ELISA) technology was used to quantify the previ-
ously identified urine protein biomarker candidates. All
ELISAs were performed according to vendor instructions
for the measurement of selected biomarkers in the urine
using commercially available kits (Abcam, Cambridge,
Massachusetts; Biolegend Inc., San Diego, California; Ebio-
science Inc., San Diego, CA; Fisher Scientific, Rockford, Il-
linois; and Uscn Life Science Inc., Wuhan, China). The
protein analytes’ urine abundance was reported as a
normalized ratio of the ELISA-derived concentration to
urinary creatinine concentration to correct for urine bio-
logical variations.
2

Statistical Analyses
Patient demographic data were analyzed using the Epidemi-
ological calculator (R epicalc package; http://cran.r-project.
org/web/packages/epicalc/index.html). Student t test was
performed to calculate P values for continuous variables,
and Fisher exact test was used for comparative analysis
of categorical variables. Hypothesis testing to detect statisti-
cal differences in discovered biomarkers was performed
using a Student t test (2-tailed) and Mann-Whitney U test
(2-tailed), along with local false discovery rate17 methods
to correct for multiple hypothesis testing issues.
We then performed biomarker feature selection and panel

optimizationwith the aim to develop amultiplexed antibody-
based assay for both the diagnosis and prognosis of NEC.
This was accomplished using a genetic algorithm (R genalg
package; http://cran.r-project.org/web/packages/genalg/index.
html) to construct biomarker panels from the validated urine
protein biomarkers. Using the validation ELISA data, we
identified the optimal biomarker panels by testing all possible
combinations of the validated urine protein biomarkers while
balancing the need for small panel size, accuracy of classifica-
tion, goodness of class separation (NEC vs sepsis, medical
NEC vs surgical NEC, NEC vs control, and sepsis vs control),
and sufficient sensitivity and specificity.
The predictive performance of each biomarker panel analysis

was evaluated by receiver-operator characteristic (ROC) curve
analysis by plotting the sensitivity vs 1-specificity.18-20 The
biomarker panel score was defined as the ratio between the geo-
metric means of the respective up- and down-regulated protein
biomarkers. To define the performance of the biomarker panels
we chose the coordinates on theROCcurve that represented the
“cut-off” point with the best sensitivity and specificity as previ-
ously described.19

Results

The only patient characteristic with a statistically significance
difference between groups in the discovery cohort was race,
with a greater percentage of black infants in the NEC group
compared with the sepsis and control groups (Table I).
The characteristics with statistically significance differences
between groups in the biomarker validation cohort were
gestational age and birth weight, with infants in the control
group tending to have younger gestational ages and lower
birth weights than those in the NEC and sepsis groups. The
time between initial clinical concern (ie, the time of urine
sample collection) and confirmed medical NEC, defined as
the presence of pneumatosis, was median 32 hours (IQR
9.5-66.5). The time between initial clinical concern and
confirmation of surgical NEC, defined as the time of
laparotomy, peritoneal drain, or death from complication
of NEC, was median 48 hours (IQR 12-171.5).
Biomarker discovery (LCMS)
LCMS analysis of urine from the 59 infants in the
biomarker discovery cohort revealed 13 candidate proteins
Sylvester et al
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Table I. Patient characteristics

Discovery cohort (n = 59)

NEC

Sepsis (n = 12) Control (n = 2)Medical NEC (n = 29) Surgical NEC (n = 16) Total NEC (n = 45)

No. Obs. n = 26 n = 14 n = 40 n = 12 n = 2
Sex
Female 12 (46.2%) 7 (50.0%) 19 (47.5%) 7 (58.3%) 2 (100.0%)
Male 14 (53.8%) 7 (50.0%) 21 (52.5%) 5 (41.7%) 0 (0.0%)

Race*
Asian 1 (3.4%) 0 (0.0%) 1 (5.0%) 1 (8.3%) 2 (100.0%)
Black 8 (27.6%) 5 (31.2%) 13 (28.9%) 0 (0.0%) 0 (0.0%)
White 16 (55.2%) 6 (37.5%) 22 (48.9%) 11 (91.7%) 0 (0.0%)
Unknown 4 (13.8%) 5 (31.5%) 9 (20.0%) 0 (0.0%) 0 (0.0%)

Gestational age, wk
Median (IQR) 28.5 (27-32) 28.5 (25-31.8) 28.5 (27-32) 28 (26.5-32.5) 30.5 (28.2-32.8)

Birth weight, g
Median (IQR) 1095 (938-1952) 970 (740.5-1771.2) 1070 (850-1947.8) 1047.5 (840-1927.5) 1840 (1350-2330)

Birth length, cm
Median (IQR) 36 (33-42) 34.5 (33-43.2) 35.75 (33-43.2) 37 (32-43) 41 (34-48)

Birth head circumference, cm
Median (IQR) 26 (24.5-31) 24.5 (23.5-27.9) 26 (23.5-30.2) 24.5 (24-28.8) 28.5 (26.2-30.8)

Validation cohort (n = 59)

NEC

Sepsis (n = 5) Control (n = 15)Medical NEC (n = 30) Surgical NEC (n = 10) Total NEC (n = 40)

Sex
Female 16 (53.3%) 2 (20.0%) 18 (45.0%) 3 (60.0%) 6 (40.0%)
Male 14 (46.7%) 8 (80.0%) 22 (55.0%) 2 (40.0%) 9 (60.0%)

Race
Asian 2 (6.7%) 0 (0.0%) 2 (5.0%) 0 (0.0%) 0 (0.0%)
Black 13 (43.3%) 3 (30.0%) 16 (40.0%) 3 (60.0%) 7 (46.7%)
White 13 (43.3%) 6 (60.0%) 19 (47.5%) 1 (20.0%) 7 (46.7%)
Unknown 2 (6.7%) 1 (10.0%) 3 (7.5%) 1 (20.0%) 1 (6.7%)

Gestational age, wk*
Median (IQR) 30 (27-33) 27.5 (25-32) 29.5 (27-32.5) 28 (26-31.5) 26 (25-27.5)

Birth weight, g*
Median (IQR) 1265 (935-1873.5) 1285 (796.5-1912.5) 1265 (907-1943.8) 950 (900-961) 730 (632.5-937.5)

Birth length, cm
Median (IQR) 37 (34.1-41.8) 34.5 (32-42.8) 37 (32.9-42.2) 34 (31-36) 33.8 (32-36)

Birth head circumference, cm
Median (IQR) 27.2 (25-30.5) 24.4 (23-28) 27 (23.9-30.1) 24.2 (23.4-24.6) 23 (21.8-26)

Obs, observations.
*P < .05.
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with potentially relevant biologic roles: alpha-2-
macroglobulin-like protein 1 (A2ML1), apolipoprotein
CIII, complement component protein 3, caspase protein
8, CD14, cystatin 3 (CST3), fibrinogen alpha chain
(FGA), kininogen protein 1, lectin manose-binding protein
2, pigment epithelium-derived factor (PEDF), Pmp-like
secreted protein 2, retinol binding protein 4 (RET4), and
vasolin (VASN).

As a verification of the LCMS discovery approach, the
differential presence of CD14, a pattern recognition recep-
tor, was confirmed by Western blot analysis comparing
medical NEC, surgical NEC, and sepsis urine samples
(Figure 1; available at www.jpeds.com). Western blot
revealed the alpha-form and beta-form of soluble CD14,
both of which are known to be up-regulated in the plasma
of adults experiencing proinflammatory conditions.21

LCMS spectral counts were then plotted against CD14
Western blot band intensity revealing a correlation
coefficient of 0.86 (P < .001; Figure 2; available at www.
jpeds.com) with the more severe pathology (surgical
NEC) having greater levels of CD14 expression by both
analytical methods.
Urine Protein Biomarkers for the Diagnosis and Prognosis of Nec
Biomarker Validation (ELISA)
The urine samples from the 60 infants in the validation
cohort were used for ELISA-based validation of the 13
candidate biomarkers. Seven of the 13 LCMS candidate
biomarkers were quantitatively validated (2-tailed
Mann-Whitney U tests, P < .05; Tables II and III;
Table III, available at www.jpeds.com) and consistently
shared the same trend of up- or down- regulation
between case and control samples when comparing
discovery LCMS and validation ELISA results. In
addition, individual ROC curves were plotted for each
validated analyte and the point of intersection for optimal
sensitivity and specificity was computed, demarcated, and
reported (Figure 3 and Table IV; available at www.jpeds.
com).
The genetic algorithm panel construction process led to

the design of four distinct biomarker panels with complete
separation between NEC vs sepsis, medical NEC vs surgical
NEC, NEC vs control, and sepsis vs control (Table V and
Figure 4). These biomarker panels are nonredundant,
indicative of their noninclusive relationships.
rotizing Enterocolitis in Infants 3
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Table II. ELISA biomarker validation by Mann-
Whitney U test

Analyte

Mann-Whitney U test P value

NEC M vs
NEC S

NEC vs
Sepsis

NEC vs
control

Sepsis vs
control

A2ML1 .02* .08 1.40 � 10�4† .50
CD14 .02* .77 .12 .35
CST3 .12 .58 .03* .35
FGA .02* .8 .06 .16
PEDF 1.82 � 10�3† .03* 2.23 � 10�4† .67
RET4 6.89 � 10�3 .64 .11 .50
VASN .09 .80 .02* .12

NEC M, medical NEC; NEC S, surgical NEC.
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Importantly, each biomarker panel was able to differen-
tiate between the groups with sensitivities ranging from
0.89 to 0.96 and specificity ranging from 0.80 to 0.90
(Figure 4). Not surprisingly, the panels assessing infants
with diagnoses more closely related in severity of
inflammation had lower sensitivity (NEC vs sepsis, 0.89;
and medical NEC vs surgical NEC, 0.89) compared with
the panels including the controls (NEC vs control, 0.96;
and sepsis vs control, 0.90).

Discussion

Considerable effort has been directed toward the identifica-
tion of biomarkers of NEC given the inability to predict the
ultimate course of disease based on clinical variables alone.22

Exploratory proteomics enables the unbiased identification
of candidate biomarkers before clinical manifestation of dis-
ease. Urine biomarker panels, specifically, hold the potential
to provide low-risk, low-cost facilitation of clinical decision-
making. The urine protein biomarkers described in the cur-
rent study enabled the accurate diagnosis of NEC amongst a
population of infants with NEC, infants with non-NEC
sepsis, and noninfected premature infants. In addition, these
biomarkers showed potential prognostic value, as they were
also able to accurately differentiate between infants with
medical NEC and those with surgical NEC.

Many previous studies have investigated the diagnostic ca-
pabilities of targeted biomarkers for NEC. Epidermal growth
factor,23,24 interalpha inhibitor proteins,25-28 intestinal fatty
acid-binding protein,29-33 and fecal calprotectin,34 have all
been identified as potential biomarkers of NEC in human in-
fants. In addition, a number of interleukins (ILs) and other
inflammatory factors are either up-regulated (IL 1, 6, 8,
Table V. Biomarker panels for NEC M vs NEC S, NEC vs co

Clinical usefulness

Analyte

ClassA2ML1 CD14 CST3 FGA PEDF RET4 VASN

NEC M vs NEC S +[ +Y +Y - +Y +Y +[ NEC M
NEC vs Control - - +[ - +Y +[ - NEC 1
NEC vs Sepsis - - +[ - +Y +[ - NEC 1
Sepsis vs control +[ - +[ +[ - - +[ Sepsis 2

Sample panel score was defined as the ratio of the geometric mean of the up-regulated panel mar

4

and 12, tumor necrosis factor-alpha, interferon, and
platelet-activating factor), down-regulated, or temporally
correlated with the severity of disease (IL 4, 10, and 11) in in-
fants with NEC or other inflammatory conditions of in-
fancy.35-42 Despite promising results, no single biomarker
has proven to be useful as a stand-alone diagnostic test in
clinical practice. In contrast, the current study made use of
a nontargeted, exploratory approach to identify several
candidate biomarkers. The biomarker panels were subse-
quently validated on a na€ıve population with relatively strong
diagnostic (NEC vs sepsis; mean area under the curve 98.2%,
sensitivity 0.89, specificity 0.80) and prognostic (medical
NEC vs surgical NEC; mean area under the curve 98.4%,
sensitivity 0.89, specificity 0.90) capabilities.
Importantly, many of these have potential physiologic ba-

ses for their association with NEC. Alpha-2macroglobulin
(which shares significant homology with A2ML1) and FGA
are both components of the coagulation cascade, a poten-
tially significant finding given that coagulation necrosis is a
common pathologic finding in NEC resection specimens.
VASN is an inhibitor of transforming growth factor-beta,
and is down-regulated after vascular injury,43 a finding
consistent with lower urine levels of VASN in the surgical
NEC cohort. The pattern recognition receptor CD14 is a
regulator of the innate immune system that plays a role in
the response to bacterial lipopolysaccharide, potentially ex-
plaining its elevation in the surgical NEC cohort, a patient
group withmore extensive bowel injury and thus bacterial in-
vasion. CST3 has been described as a biomarker for acute kid-
ney injury,44 likely explaining its presence in greater levels in
the urine as systemic disease progresses. Although these asso-
ciations are intriguing, further investigation is needed to
identify causal relationships and to provide further biologic
insight.
This study demonstrates the utility of unbiased biomarker

discovery platforms in which proteins with correlated and
potentially causal relationships to the pathophysiology of dis-
ease can be identified. The clinical potential of the described
biomarker panel was highlighted by the validation on a na€ıve
population, even though the inclusion of the sepsis group in
addition to the noninfected control group confirmed that the
identified biomarkers were not simply markers of a generic
proinflammatory state.
A significant limitation of our approach, indeed a charac-

teristic inherent to any proteomics-based study, was the
absence of a clear pathophysiologic link between the identi-
fied biomarkers and the pathology in question. As previously
ntrol, NEC vs sepsis, and sepsis vs control classifications

Sample panel score

Class

Sample panel score

Median (IQR) Mean (SD) Median (IQR) Mean (SD)

2.1 (0.8-2.5) 2.64 (3.60) NEC S 125.5 (28.9-208.9) 118.9 (105.7)
9.4 (9.7-67.9) 161.35 (596.71) Control 0.4 (0.23-1.1) 0.8 (0.8)
9.4 (9.7-67.9) 161.35 (596.71) Sepsis 1.4 (0.49-1.9) 1.3 (1.1)
1.2 (20.4-48.1) 38.60 (31.50) Control 4.3 (2.26-12.8) 10.4 (13.0)

kers’ assay results and those of the down-regulated panel markers’ assay results.

Sylvester et al



Figure 4. Biomarker panel ROC curves. The black dots represent “cut-off” points along the ROC curves, indicating the best
sensitivity and specificity coordinates. A, NEC vs sepsis consists of 3 proteins: CST3, PEDF, and RET4. B, Medical NEC vs
surgical NEC consists of 6 proteins: A2ML1, CD14, CST3, PEDF, RET4, and VASN. C, NEC vs control consists of 3 proteins:
CST3, PEDF, and RET4. D, Sepsis vs control consists of 4 proteins: A2ML1, CST3, FGA, and VASN. *Significant and highly
significant. AUC, area under the curve.
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mentioned, many of the biomarkers identified and validated
in this study are related to known coagulation, inflammatory,
or immunologic cascades. Although not confirming causal
significance, this is an interesting finding that requires addi-
tional study.

Another important limitation of this pilot study is the rela-
tively small cohort size illustrating the need for further pro-
spective validation and longitudinal testing. Furthermore,
there were noted differences in, and thus possible confound-
ing of our results by, gestational age and birth weight between
the study groups in the biomarker validation cohort. Future
studies will be needed to address impact of these factors on
biomarker validity. Despite such limitations, the quantitative
differences in urine biomarker levels between multiple study
groups validated on a na€ıve population suggest potential
future clinical utility.

The use of an unbiased exploratory proteomics approach
to identify urine biomarkers for NEC led to the development
of a panel of validated proteins that demonstrate promise as a
clinically useful instrument. The incorporation of additional
targeted biomarkers along with patient-specific clinical infor-
Urine Protein Biomarkers for the Diagnosis and Prognosis of Nec
mation will likely strengthen the utility of the described bio-
markers and is an important area of ongoing investigation.
With continued refinement, it appears likely that a
biomarker-based instrument will lead to more efficient diag-
nosis, more timely intervention, and improved outcomes for
infants affected by one of the most common and debilitating
diseases of prematurity. n
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Figure 1. Western blot analysis of urine CD14.M, medical, S,
surgical; sCD-14, soluble CD14.

Figure 2. Correlation of CD14 LCMS spectral counts and
CD14 Western blot gel band intensity for infants in the sepsis,
medical NEC, and surgical NEC groups. Coef, coefficient.
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Figure 3. Single analyte biomarker’s performances in discriminating A,medical and surgical NEC; B, NEC and control; C, NEC
and sepsis; and D, sepsis and control classes were analyzed by ROC analysis. The Y-axis is the sensitivity and X-axis is the 1 �
specificity. The red dot represents the point of optimized sensitivity and specificity and is listed under each ROC plot. A total of
500 testing data sets were generated by bootstrapping methods from the ELISA data and were used to derive estimates of SE
and CIs for the ROC analyses. The plotted ROC curve represents the vertical average of the 500 bootstrapping runs, and the box
and whisker plots show the vertical spread around the average. (Continues)
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Figure 3. Continues.
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Figure 3. Continues.
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Figure 3. Continued.
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Table III. Validated biomarker levels by pathologic group

Analyte Unit

NEC

Sepsis ControlM S M + S

Median (IRQ) Mean (SD) Median (IRQ) Mean (SD) Median (IRQ) Mean (SD) Median (IRQ) Mean (SD) Median (IRQ) Mean (SD)

A2ML1 Analyte/Cr, ng/mg 61.55 (14.12-166.37) 174.03 (346.64) 3.79 (1.40-9.51) 22.25 (47.81) 28.28 (3.79-130.13) 138.61 (309.67) 3.32 (1.55-9.06) 5.30 (6.37) 1.68 (0.96-3.36) 2.71 (3.03)
CD14 Analyte/Cr, ng/mg 174.40 (84.74-524.22) 451.76 (726.18) 895.49 (231.43-2601.20) 2740.24 (5004.98) 212.66 (110.28-679.12) 979.87 (2574.92) 186.53 (100.67-655.39) 367.62 (361.03) 89.44 (39.14-574.68) 295.63 (375.31)
CST4 Analyte/Cr, ng/mg 43.70 (21.30-225.23) 215.50 (416.28) 227.20 (120.54-605.62) 355.27 (352.39) 87.30 (23.16-239.16) 248.39 (401.55) 94.22 (59.22-111.59) 81.14 (52.93) 31.14 (12.89-86.68) 51.12 (47.37)
FGA Analyte/Cr, ng/mg 15.78 (9.26-33.81) 74.18 (143.97) 69.50 (46.25-237.97) 408.39 (862.69) 21.57 (9.95-97.57) 157.73 (456.77) 29.06 (15.51-175.91) 95.71 (149.33) 15.52 (4.23-23.63) 22.67 (35.07)
PEDF Analyte/Cr, ng/mg 4.40 (1.57-25.31) 66.05 (228.22) 122.04 (7.14-257.70) 225.45 (309.84) 8.60 (2.79-105.75) 115.86 (262.27) 111.66 (100.56-134.47) 212.40 (225.50) 217.34 (57.49-491.52) 378.60 (411.31)
RET4 Analyte/Cr, ng/mg 417.89 (188.59-655.45) 642.35 (846.82) 1122 (898.48-2083.34) 5549.31 (12 299.56) 512.72 (197.95-1115.57) 1796.93 (6090.69) 454.38 (337.35-655.21) 463.24 (220.19) 298.60 (115.29-692.03) 406.36 (357.47)
VASN Analyte/Cr, ng/mg 23.93 (9.78-129.94) 97.17 (163.15) 9.8 (6.32-21.43) 17.04 (18.11) 19.99 (9.04-52.85) 78.68 (146.81) 13.67 (10.70-43.44) 26.40 (24.62) 2.74 (0.54-22.83) 11.04 (12.62)

Cr, creatinine.
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Table IV. Individual biomarker intercohort testing characteristics

Analyte

NEC M vs NEC S NEC vs control NEC vs sepsis Sepsis vs control

ROC AUC Sensitivity* Specificity* ROC AUC Sensitivity* Specificity* ROC AUC Sensitivity* Specificity* ROC AUC Sensitivity* Specificity*

A2ML1 80.40% 0.80 0.70 84.90% 0.76 0.80 77.50% 0.56 0.80 0.78 0.56 0.80
CD14 77.50% 0.60 0.80 65.10% 0.64 0.60 55.90% 0.56 0.50 0.56 0.56 0.50
CST4 68.40% 0.73 0.60 70.20% 0.49 0.80 58.20% 0.4 0.80 0.58 0.40 0.80
FGA 74.40% 0.73 0.70 68.40% 0.52 0.70 56.20% 0.48 0.60 0.56 0.48 0.60
PEDF 83.90% 0.68 0.80 83.40% 0.69 0.80 80.60% 0.68 0.80 0.58 0.60 0.60
RET4 81.00% 0.81 0.70 65.50% 0.47 0.70 58.60% 0.47 0.70 0.62 0.78 0.50
VASN 70.00% 0.59 0.70 73.30% 0.68 0.60 54.50% 0.56 0.50 0.76 0.73 0.60

AUC, area under the curve.
*The optimal sensitivity and specificity point along the ROC curve.
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