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Abstract: Preeclampsia (PE) is a condition that poses a significant risk of maternal mortality and
multiple organ failure during pregnancy. Early prediction of PE can enable timely surveillance and in-
terventions, such as low-dose aspirin administration. In this study, conducted at Stanford Health Care,
we examined a cohort of 60 pregnant women and collected 478 urine samples between gestational
weeks 8 and 20 for comprehensive metabolomic profiling. By employing liquid chromatography mass
spectrometry (LCMS/MS), we identified the structures of seven out of 26 metabolomics biomarkers
detected. Utilizing the XGBoost algorithm, we developed a predictive model based on these seven
metabolomics biomarkers to identify individuals at risk of developing PE. The performance of the
model was evaluated using 10-fold cross-validation, yielding an area under the receiver operating
characteristic curve of 0.856. Our findings suggest that measuring urinary metabolomics biomarkers
offers a noninvasive approach to assess the risk of PE prior to its onset.

Keywords: early pregnancy; preeclampsia risk prediction; biomarker; urinary metabolite; LC-MS/MS

1. Introduction

Preeclampsia (PE) is a severe hypertensive disorder that can contribute to the mortality
and morbidity of pregnant women [1]. PE can cause problems in the liver, kidneys, brain,
and blood coagulation system of pregnant women and can also lead to adverse pregnancy
outcomes such as poor fetal growth and premature birth [2]. Early treatment with low-dose
aspirin can effectively reduce the risk of developing PE [3]. Usually, PE develops after the
20th week of gestation. Therefore, accurate PE prediction before the 20th week could help

Metabolites 2023, 13, 715. https://doi.org/10.3390/metabo13060715 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo13060715
https://doi.org/10.3390/metabo13060715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-1205-6936
https://orcid.org/0000-0003-4483-8369
https://orcid.org/0000-0001-6701-0594
https://orcid.org/0000-0002-7522-5824
https://doi.org/10.3390/metabo13060715
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo13060715?type=check_update&version=2


Metabolites 2023, 13, 715 2 of 16

identify pregnancies at high risk and allow for proactive interventions to improve health
outcomes and economic hardships [4].

Considerable progress has been made in using multivariate methods to predict PE [5–7].
Relevant factors used for modeling include clinical characteristics [8] and biochemical [9,10]
and genetic [11] markers. Extensive research has identified a range of potential biochemical
predictors of PE [12–14]. Due to the noninvasive collection of urine, urinary analytes could
be of great clinical utility for predicting PE risk and subsequent management of pregnancy.
Proteomic analysis of urine can also provide valuable information for understanding the
pathophysiology of PE [15–18].

In our recent study, we characterized the baseline weekly profile of the urinary metabolome
during a pregnancy uncomplicated by adverse outcomes, which can serve as a high-resolution
metabolomic reference for future studies on adverse pregnancy outcomes [19,20]. We hypothe-
sized that deviations from this normal urinary metabolomics profile might identify pregnancies
at risk for PE. We used urine samples collected weekly during early pregnancy from pregnant
women with PE and non-PE. Using liquid chromatography–mass spectrometry (LC-MS)-based
untargeted metabolomics, we identified a panel of metabolic compounds that were highly asso-
ciated with PE. A predictive model was established to estimate PE risk based on the single urine
sample collected in early pregnancy. Our findings suggest that measuring urinary metabolomics
biomarkers may provide a noninvasive, cost-effective, and robust approach to assessing PE risk
during the first or second trimester of pregnancy. Understanding the functional significance
of these PE biomarkers can provide new insights into the pathogenesis and pathophysiology
of PE.

2. Method
2.1. PE Definition

We used the current American College of Obstetrics and Gynecology (ACOG) guide-
line to define PE [21], which is characterized by hypertension that occurs after 20 weeks of
gestation, defined as systolic or diastolic blood pressure of 140 and/or 90 mmHg, respec-
tively, measured on at least two occasions, 4 h to 1 week apart, and proteinuria, which can
be indicated by 300 mg of protein in a 24 h urine collection, a protein/creatinine ratio of at
least 0.3 (each measured as mg/dL), or, if these measurements are not readily available, a
random urine specimen containing 1+ protein by dipstick. In the absence of proteinuria,
a diagnosis of preeclampsia can still be made if there is evidence of thrombocytopenia
(platelet count less than 100,000/mL), impaired liver function (elevated blood levels of liver
transaminases to twice the normal concentration), new development of renal insufficiency
(elevated serum creatinine greater than 1.1 mg/dL), pulmonary edema, or new-onset cere-
bral or visual disturbances. Early- and late-onset PE are distinguished based on whether
the diagnosis is made before or after 34 weeks of gestation, respectively.

The severe PE was also diagnosed based on criteria of ACOG, including systolic
blood pressure of 160 mmHg or more, or diastolic blood pressure of 110 mmHg or more
on two occasions at least 4 h apart (unless antihypertensive therapy is initiated before
this time), thrombocytopenia (platelet count less than 100,000 × 109/L), impaired liver
function that is not accounted for by alternative diagnoses and as indicated by abnormally
elevated blood concentrations of liver enzymes (to more than twice the upper limit for
normal concentrations), or by severe persistent right upper quadrant or epigastric pain
unresponsive to medications. We classified all PE except for severe PE as mild PE.

2.2. Cohort Construction

To develop and validate the PE model, we recruited 60 pregnant women who gave
birth at Stanford Health Care (SHC) (Stanford, CA, USA). Of these, 19 had full-term
pregnancies without PE, 13 had full-term pregnancies with PE, 21 had preterm pregnancies
without PE, and 7 had preterm pregnancies with PE. All patients had singleton pregnancies.
The research was conducted without patient involvement, and patients were not consulted
on the study design or invited to comment on the results. Ethics committees at Stanford
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University approved the study (IRB # 21956), and all participants provided written informed
consent. Patients were not involved in the writing or editing of this document for readability
or accuracy.

2.3. Samples

The urine was retrospectively collected and aliquoted and stored in −80 ◦C imme-
diately. No freeze thaw cycle was allowed and all urine samples for the analysis were
prepared fresh directly from −80 ◦C aliquots. Urine samples (n = 478) were longitudinally
collected from 60 pregnant women of various races, geographic locations, and socioe-
conomic statuses. The distributions of sample, maternal, and pregnancy characteristics
for cases (PE) and controls (non-PE) are shown in Figure 1. The time range of sample
collection was between the 8th and 20th week of gestation. A total of 163 urine samples
from 19 full-term pregnancies without PE were collected in the first (n = 49) and second
(n = 114) trimesters, and 109 urine samples from 13 full-term pregnancies with PE were
collected in the first (n = 35) and second (n = 74) trimesters. A total of 153 urine samples
from 21 preterm pregnancies without PE were collected in the first (n = 49) and second
(n = 104) trimesters. A total of 53 urine samples from seven preterm pregnancies with PE
were collected in the first (n = 22) and second (n = 31) trimesters (Figure S1). Pregnant
women were of different ages, races, and PE severities (Table 1).
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Table 1. Demographics of the subjects enrolled at SHC. 

 PE (n = 20) Non-PE (n = 40) p-Value 
Number of samples 162 316  
Cohort, n (%)   <0.001 

Full-term with PE 13 (65) 0 (0)  
Pre-term with PE 7 (35) 0 (0)  

Figure 1. Comparisons of sample, maternal, and pregnancy characteristics for cases of PE and
controls (non-cases) in the study cohort. In this study, we treated each longitudinal sampling as an
independent analysis unit while considering the temporal gestational age association. Panel (a) shows
the sample collection time across gestation, while panel (b) presents the gestational age at delivery of
samples. Panels (c,d) illustrate the maternal characteristics of age, and race of the PE and non-PE
urine sampling groups. Panel (e) shows the PE patients’ severity distribution in the PE urine samples.

2.4. Urinary Metabolite Extraction and Global Liquid Chromatography Mass Spectrometry
(LC-MS/MS) Analysis

The urinary metabolite extraction and LC-MS/MS global metabolomics profiling were
performed using the precipitation-based approach, as previously described [22]. Briefly,
10 µL of urine was mixed with 100 µL of methanol containing 5 µg/mL of 13C5, 15N-l-
proline, 13C6-l-arginine, and D5-l-glutamine. The extract was vortexed and centrifuged,
and 90 µL of the supernatant was collected for global metabolomics analysis.
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Table 1. Demographics of the subjects enrolled at SHC.

PE (n = 20) Non-PE (n = 40) p-Value

Number of samples 162 316
Cohort, n (%) <0.001

Full-term with PE 13 (65) 0 (0)
Pre-term with PE 7 (35) 0 (0)
Pre-term without PE 0 (0) 21 (52.5)
Full-term without PE 0 (0) 19 (47.5)

Age, mean (IQR) 35.1 (27.8, 36.2) 32.1 (29, 35) 0.84
GA at delivery, mean (IQR) 37 (36, 39) 36 (33.8, 39) 0.65
Hypertensive disorder, n (%) <0.001

Mild PE 10 (50) 0 (0)
Severe PE 10 (50) 0 (0)
Non-PE 0 (0) 40 (100)

Race, n (%) 0.21
American Indian 0 (0) 2 (5)
Asian 2 (10) 1 (2.5)
Black 1 (5) 1 (2.5)
Indian 2 (10) 1 (2.5)
Pacific Islander 0 (0) 1 (2.5)
White 9 (45) 28 (70)
Other 6 (30) 6 (15)

Total number of previous
pregnancies, mean (SD) 1.1 (2.0) 1.9 (2.2) 0.19

Values are mean ± SD or numbers (percentages). SD: Standard deviation; GA: Gestational age; IQR:
Interquartile Range.

QC urine samples were analyzed repetitively to assess data quality. Metabolomics
LCMS with quality control (QC) samples at regular intervals, such as every 10 samples in
our study, is crucial for ensuring the reliability and accuracy of the metabolomics profiling
data. To generate a quality control (QC) sample, 10µL of each of the PE and non-PE urine
samples were pooled into a single tube [23], representative of the entire study cohort.
These samples are analyzed alongside the study samples to monitor the performance and
stability of the LCMS instrument and the overall analytical process. Including urine QC
samples in metabolomics LCMS experiments serves several important purposes. First,
QC samples provide a reference standard that allows for the evaluation of the analytical
variability and reproducibility. By comparing the measurements of metabolites in QC
samples across different runs or batches, researchers can identify any technical variations
and assess the overall quality of the data. Secondly, the analysis of QC samples helps in
monitoring the stability and performance of the LCMS instrument over time. Any drift or
instrumental issues can be detected by examining the consistency of the measurements
in QC samples. If deviations are observed, corrective actions can be taken to address the
problem and ensure data integrity. Thirdly, QC samples are also used for data normalization
and correction of batch effects. Metabolomics profiling studies often involve the analysis of
multiple batches or runs, which can introduce unwanted technical variation. By comparing
the measurements in QC samples across different batches, it is possible to adjust and
normalize the data, reducing batch effects and improving the accuracy of the statistical
analyses. Overall, the inclusion of urine QC samples in our longitudinal metabolomics
LCMS experiments allows for the assessment of data quality, instrument performance
monitoring, and data normalization. It enhances the reliability and reproducibility of
the metabolomics profiling data, enabling more robust and meaningful interpretation of
the results.

All samples were analyzed using an LC metabolomics platform that employed hydrophilic
interaction chromatography (HILIC) with a column size of 2.1 mm × 100 mm × 3.5 µm. The
global MS analysis was performed using a Vanquish UHPLC system coupled to Q Exactive
plus and Q Exactive HF hybrid Quadrupole-Orbitrap mass spectrometers manufactured by
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ThermoFisher in San Jose, CA, USA. This LC-MS platform allowed for comprehensive profiling
of the metabolites present in the samples, enabling the identification and quantification of a
wide range of compounds.

2.5. Data Preprocessing and Statistics

The raw data obtained from the MS analysis were subjected to preprocessing to create
a data matrix that represented the relative abundance of metabolites across all the samples.
To ensure data accuracy and minimize variation, a robust QC-based locally estimated
scatterplot smoothing (LOESS) signal correction method was applied. This involved fitting
a LOESS curve to the signal responses obtained from QC replicates, allowing for indepen-
dent correction of each feature. The R xcms package was utilized for this preprocessing
step. Furthermore, to mitigate batch effects, the metabolite values in each sample were
normalized using the median values obtained from the QC samples. This normalization
process helped to enhance the comparability and reliability of the data across different
batches or runs.

Urine molecular profiling presents a challenge due to the influence of biological dilu-
tion, which can be influenced by factors like diet, hydration status, and kidney function,
leading to significant variations in urine analyte concentrations. To address this challenge
and ensure accurate analysis, we implemented two normalization strategies to account
for differences in urine concentration among samples. Firstly, we utilized the probabilistic
quotient method, as described in reference [24], to adjust for the variations in urine con-
centration. This method provides a statistical approach to normalize the data and account
for the dilution effect, enabling more reliable comparisons across samples. Additionally,
creatinine was employed as a normalization factor in this study, following our previous
approach outlined in reference [22]. Creatinine was chosen due to its stability and con-
sistent excretion rate in urine, making it a suitable marker for normalization purposes.
By using creatinine as a normalization factor, we aimed to further mitigate the impact of
biological dilution and enhance the accuracy of our urine molecular profiling analysis.
These normalization strategies were crucial in overcoming the challenges associated with
biological dilution, allowing us to obtain more reliable and meaningful insights from the
urine molecular profiling data.

For downstream analyses, we implemented specific criteria to ensure the quality and
reliability of the metabolomics features. Features that exhibited a coefficient of variation
(CV) of less than or equal to 20% in the QC samples, as well as those with missing val-
ues in less than or equal to 30% of the samples, were selected for further analysis. To
identify metabolites that showed differential expression between groups, we employed
the DESeq2 package. This approach allowed us to statistically assess the significance of
differential expression and identify metabolites that were associated with the condition
of interest. Furthermore, to characterize the metabolomics profiling of samples collected
during the first and second trimesters, we employed partial least squares discriminant
analysis (PLS-DA). This multivariate analysis technique enabled us to explore the patterns
and differences in metabolite profiles between the two trimesters. To select metabolites
that were significantly associated with preeclampsia (PE), we applied multiple criteria.
These included false discovery rates (FDRs), fold changes, and correlation analysis using
Spearman’s rank correlation. By considering these criteria, we identified metabolites that
exhibited significant associations with PE. Additionally, we assessed the significance of
metabolic pathways using the one-sided Fisher exact test and KEGG pathways [25]. This
allowed us to gain insights into the biological processes and pathways that were perturbed
in relation to PE.

All statistical analyses were conducted using various R packages [26], providing a
robust and comprehensive framework for analyzing and interpreting the metabolomics
data in this study.
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2.6. Metabolite Identification and Metabolite-Based Modeling

Metabolite identification in this study followed a rigorous approach based on tier
one or two identification guidelines outlined by the Metabolomics Standards Initiative
(MSI) [27]. We utilized chemical standards to aid in the identification process. Tandem
MS/MS data obtained from urine samples using the Thermo Q Exactive plus instrument
were utilized to generate MS1/MS2 profiles. These profiles were then subjected to database
searching using publicly available resources such as HMDB, MoNA, MassBank, METLIN,
and NIST. To confirm the identity of potential biomarker candidates, we obtained reference
compounds of the metabolites of interest. These reference compounds were then subjected
to a tier one identification approach, which involved comparing their retention times and
MS1/MS2 patterns with those obtained using the same LC-MS/MS protocol as used in the
study. By employing this comprehensive identification strategy, we aimed to ensure the
accuracy and reliability of the metabolite identifications in our study, strengthening the
validity of the biomarker candidates we identified.

In order to predict the risk of developing PE, we developed an XGBoost model utiliz-
ing the metabolic features identified in our study. The model’s parameters were carefully
selected through a rigorous process of 10-fold cross-validation using our dataset. To evalu-
ate the performance of the model, we employed receiver operating characteristic curves
(ROCs) and calculated the corresponding areas under the curve (AUCs). These metrics
provided valuable insights into the prediction accuracy of our model. To further analyze the
risk stratification capabilities of the model, we compared the probabilities of PE between
low-risk and high-risk categories using Kaplan–Meier survival analyses. This allowed
us to assess the differences in PE occurrence between these two groups. Additionally,
we examined the trends of changes in the significant indicators throughout pregnancy,
their correlations with maternal health, and their potential associations with other dis-
eases. These discussions provided a comprehensive understanding of the dynamics of
these indicators and their relevance in the context of PE. By incorporating these analytical
approaches, we aimed to not only develop a robust prediction model for PE risk but also
gain insights into the underlying mechanisms and potential clinical implications of the
identified indicators.

3. Results
3.1. A Unique PE-Associated Metabolomics Pattern and Metabolic Pathway Analyses

The study workflow is illustrated in Figure 2; it involved several key steps. Initially, LC-
MS metabolomics profiling was performed, resulting in the identification of 8341 metabolic
features. Subsequently, quality control (QC), data filtering, and normalization procedures
were applied (Figure 3a) to ensure the reliability and consistency of the data.

To gain a comprehensive understanding of the global metabolic patterns associated
with PE and non-PE pregnancies during the 8th to 20th week of gestation, an unsuper-
vised clustering algorithm known as partial least squares discriminant analysis (PLS-DA)
was employed (Figure S2). This analysis revealed distinct metabolomics patterns that
differentiated between the two pregnancy groups.

Furthermore, pathway enrichment analyses were conducted to identify significant
pathways (p < 0.05) associated with PE pregnancies (Figure 4). Notably, several path-
ways emerged as being significantly linked to PE, including nicotinate and nicotinamide
metabolism, arginine and proline metabolism, ABC transporters, caffeine metabolism,
lysine degradation, and valine and leucine biosynthesis. These findings shed light on the
potential metabolic dysregulations underlying the development of PE.

By employing these analytical approaches and pathway enrichment analyses, we
were able to unravel unique metabolomic patterns and identify key pathways associated
with PE pregnancies during the specified gestational period. These findings contribute to
our understanding of the metabolic alterations associated with PE and provide valuable
insights for future research and clinical interventions.
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the p-value adjusted by FDR, with features altered during pregnancy gestational age, while the
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3.2. PE Predictive Metabolomics Biomarkers

A comprehensive analysis of the metabolomics data led to the identification of 26 mater-
nal metabolite features that showed significant associations with PE. These associations were
determined through univariate analysis of metabolic features, comparing PE with non-PE
urinary metabolomes (Figure 3b). To be considered significant, these metabolites had to meet
the criteria of having a p-value less than 0.05, a case/control median fold change greater
than 1.2, and an absolute value of Spearman correlation coefficient greater than 0.2.

Among the identified metabolites, seven compounds were subjected to further analysis
through LC-MS/MS profiling and reference compound matching analyses. These seven
compounds, namely guanidineacetic acid, 2-hexenoylcarnitine, glycolic acid, valylvaline,
methylsuccinic acid, N-acetyl-L-glutamic acid, and 5-aminovaleric acid, exhibited positive
model importance in the XGBoost multivariate modeling analysis. The identity of these
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metabolites was confirmed through MS/MS analyses, comparing them with reference
compound standards (Figure 5).
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Moreover, when comparing PE and non-PE urine samples, distinct gestational age
patterns were observed for these seven metabolites (Figure 6). These patterns provided
further insights into the dynamic changes in metabolite levels throughout pregnancy and
their potential relevance to the development of PE.
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The combined findings from the univariate analysis, structural identification, mul-
tivariate modeling, and gestational age patterns highlighted the significance of these
seven metabolites in relation to PE. These findings enhance our understanding of the
metabolic alterations associated with PE and provide a foundation for the development of
a metabolomics panel for early outcome prediction.

3.3. Performance of the PE Prediction Model

A predictive model for PE was developed using the XGBoost algorithm based on
seven maternal urine metabolites. The accuracy of the model in predicting PE during the
8th to 20th week of gestation was assessed. The importance of each compound in the model
is depicted in Figure S3.

In Figure 7a, the performance of the seven-compound panel in predicting PE is shown.
The model achieved an area under the curve (AUC) of 0.856, indicating good predictive
capability, as determined through 10-fold cross-validation in the SHC cohort. Furthermore,
at a sensitivity of 76.5%, the PE risk predictive model demonstrated a positive predictive
value (PPV) of 66.7% (Figure 7b). These results highlight the potential of the model to
accurately identify individuals at risk of developing PE during early pregnancy (Figure 8).

The utilization of the XGBoost algorithm and the inclusion of the seven maternal
urine metabolites contribute to the predictive power of the model. These findings have
implications for early risk assessment and intervention strategies, ultimately aiming to
prevent or reduce the impact of PE on maternal and fetal health.

Instead of employing the probabilistic quotient normalization method [24], we adopted
an internal urine creatinine-based approach [22] to normalize the seven maternal urine
metabolite-based biomarkers in the development of our PE predictive model. Figure S4
illustrates the distribution of the data for the seven metabolites after applying different nor-
malization strategies. The model importance of each compound is presented in Figure S5.
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In Figure 9a, the model performance remains consistent, with an area under the
curve (AUC) of 0.848, as determined by 10-fold cross-validation in the SHC cohort. At
a sensitivity of 63.6% and a specificity of 90.2%, our PE risk predictive model achieves
a positive predictive value (PPV) of 76.9% (Figure 9b). Furthermore, the survival curve
generated using this model demonstrates significant differences in the PE diagnosis curve
between the two risk populations. This further confirms the effectiveness of the model
established using these seven biomarkers in assessing the risk stratification of future PE
events (Figure 10). These findings highlight the potential clinical utility of the model
in predicting and managing PE, enabling timely interventions to improve maternal and
fetal outcomes.
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4. Discussion
4.1. Summary of Main Findings

The primary objective of this paper is to estimate the risk of PE during early pregnancy
and devise preventive measures to reduce its symptoms through early intervention. In line
with current recommendations, low-dose aspirin (81 mg/day) prophylaxis is advised for
women at high risk of PE, commencing between 12 and 28 weeks of gestation (preferably
before 16 weeks) and continued until delivery. To address this objective, we specifically
selected the time frame of the 8th to 20th week of gestation for sampling. By evaluating the
performance of our predictive model, we can assess the efficacy of biomarkers obtained
during this gestational period in predicting the occurrence of PE, as detailed in this article.

We conducted a study at SHC involving a cohort of 60 pregnant women to investigate
whether the urine metabolome during pregnancy could serve as a predictive tool for the
onset of PE. Through urine metabolomics profiling, we identified a total of 8341 metabolic
features. Among them, we identified 26 metabolites that showed significant association
with the risk of PE. Further analysis enabled us to determine the structures of seven of these
metabolites. Leveraging these seven metabolites, we developed an early risk prediction
model for PE using urine samples collected between the 8th and 20th weeks of pregnancy.
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To validate the robustness of our model, we employed a 10-fold cross-validation
approach, which provided support for the notion that longitudinal analysis of urine
metabolites in early pregnancy can effectively predict the onset of PE. This approach
offers a noninvasive and cost-effective means of assessing PE risk. We also explored two
urine normalization methods, namely the probabilistic quotient [24] and the internal urine
creatinine [22]-based approach, which yielded comparable modeling performances in
predicting the occurrence of PE.

4.2. Biological Implications of PE Biomarkers

The LCMS profiling of urine metabolite biomarkers conducted in this study has
provided insights into the expression patterns of these biomarkers in pregnancies with PE
and those without (non-PE). Interestingly, we observed considerable overlap in the urine
expression patterns between the two groups. This finding indicates that relying solely on a
single time-point measurement of metabolite biomarkers or a single metabolic biomarker
may not be sufficient for early and accurate prediction of PE.

The observed overlap in metabolite biomarker expression aligns with the current
understanding that PE is a complex and multifactorial disease. It involves a range of
underlying factors that contribute to its development. Therefore, capturing the dynamic
nature of PE requires considering multiple time points and a comprehensive panel of
metabolite biomarkers.

Our findings shed light on the intricate processes involved in the pathogenesis of PE.
These processes extend beyond specific time points or gestational ages, which explains the
observed overlap in metabolite biomarker expression between PE and non-PE pregnancies.
To achieve reliable and precise prediction of PE, it is crucial to consider the complexity
and multifactorial nature of the disease, as well as the dynamic changes in metabolite
biomarkers over the course of pregnancy.

Incorporating longitudinal sampling and analysis of metabolite biomarkers through-
out pregnancy holds great promise in providing valuable insights into the evolving risk
of developing PE. This approach enables us to monitor the dynamic changes in metabo-
lite biomarkers over time, allowing for timely interventions and improved maternal and
fetal outcomes.

Among the seven PE biomarkers identified in our study, six showed a positive asso-
ciation with PE outcomes, while one exhibited a negative association. This suggests that
these metabolite biomarkers may play a role in the pathogenesis of PE and could serve as
potential indicators of disease progression.

Intriguingly, our analysis of the metabolite–metabolite interaction network, as shown
in Figure S6, revealed potential functional relationships among guanidineacetic acid, N-
acetyl-L-glutamic acid, and 5-aminovaleric acid. These metabolites may interact with each
other in complex physiological processes relevant to PE.

Previous studies have explored the relationship between 5-aminopentanoic acid and
PE. This metabolite, which is a lysine degradation product, has been implicated in vari-
ous physiological processes, including vascular function and blood pressure regulation,
which are relevant to the pathophysiology of PE. Elevated levels of 5-aminopentanoic
acid in biofluids may indicate conditions such as bacterial overgrowth or endogenous
tissue necrosis [28].

Furthermore, excessive amounts of N-acetyl amino acids have been observed in the
urine of individuals with aminoacylase I deficiency, a genetic disorder associated with
kidney damage, cardiovascular disease, and neurological deficits [29]. Guanidoacetic acid,
on the other hand, serves as a biomarker for an inborn metabolic disorder called guanidi-
noacetate methyltransferase (GAMT) deficiency [30]. Additionally, certain medium-chain
acylcarnitines, including 2-hexenoylcarnitine, can serve as useful markers for inherited dis-
orders of fatty acid metabolism [31]. Increased urinary levels of methylsuccinic acid, along
with ethylmalonic acid, are the main measurable biochemical features in ethylmalonic
encephalopathy, an autosomal recessive disorder [32].
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By uncovering these associations and providing insights into the underlying metabolic
processes, our study contributes to a better understanding of the potential mechanisms
involved in the development of PE.

4.3. Comparison with Prior Work and Limitations

The current study builds upon our previous work [22], which demonstrated that the
weekly urinary metabolomics profile during pregnancy serves as a high-resolution molec-
ular reference for future studies of adverse pregnancy outcomes. Our PE risk prediction
model differs from previous studies in terms of predictors, sampling matrices, and test
methods [6–8,12,13,15,33–35]. We explored the use of either the probabilistic quotient [24]
or the internal urine creatinine [22]-based approach to normalize our urine biomarkers to
overcome the challenge of biological dilution in urine molecular profiling. Given that there
is a limited number of studies using urine samples collected weekly starting from the first
trimester to predict PE risk, our approach is innovative and has technological advantages.

However, it is important to acknowledge the limitations of our study. Firstly, it was
retrospective in nature, and the study population was limited to a single geographic region
(CA, USA) without a verification group. This restricts the generalizability of our findings
and calls for caution when applying them to other populations or regions. In addition,
the feature-selection process did not incorporate cross-validation in conjunction with
XGBoost learning, which could have led to an overestimation of our model’s performance.
Secondly, the diversity of race and age in our case and control subgroups was relatively
narrow, which may not fully represent the demographics of the general population or
other regions. It is crucial to include a broader range of racial and ethnic backgrounds
to ensure the robustness and applicability of our findings across diverse populations.
Thirdly, we treated each longitudinal sampling as an independent analysis unit while
considering the temporal association. This approach may have resulted in the loss of
within-subject correlation, suboptimal utilization of high-resolution urine sampling data,
inaccurate estimation of gestational effects, and flawed modeling of temporal trends in PE
outcomes. To address these issues, more appropriate statistical methods, such as mixed-
effects models, generalized estimating equations (GEEs), or time-series analysis, should be
employed to explicitly account for within-subject correlation and temporal dependencies.
This would provide more accurate parameter estimation, improved inference, and better
modeling of temporal trends. Fourthly, while our model demonstrated the ability to
predict PE risk with a single urine sample during early pregnancy, the timing of onset
and the underlying biology of PE require further extensive investigation. It is important
to conduct larger prospective multi-center cohort studies that encompass a diverse racial
and ethnic population to validate the clinical utility of our urinary metabolite panel in
predicting PE.

Although our study has provided valuable insights into the potential of urine metabo-
lite biomarkers for predicting PE, it is crucial to address these limitations through further
research. By incorporating more diverse populations, utilizing robust statistical methods,
and conducting prospective studies, we can enhance the validity and clinical applicability
of our findings in the prediction and understanding of PE.

4.4. Advantage of Urine Testing of PE Risk Prediction

The study highlights the clinical importance of utilizing urinary metabolomics pro-
filing in pregnant women as a means of predicting PE. By identifying a panel of urine
metabolites during early pregnancy, we have established a noninvasive test that can ef-
fectively predict the risk of developing PE. This approach offers an alternative option for
monitoring the fetal growth environment, particularly for women who have limited access
to traditional clinical utilities such as ultrasound analysis.

Nevertheless, further investigations are necessary to explore the correlation between
the risk score obtained from our model and the timing of onset for PE. By understanding
the relationship between the risk score and the actual development of PE, we can refine our
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predictive capabilities and enhance the precision of early intervention strategies. Notably,
the advantage of noninvasive sampling with high resolution enables the early identification
of high-risk patients for PE. This timely identification empowers healthcare providers to
initiate interventions, such as low-dose aspirin, in order to mitigate potential complications
associated with PE.

In summary, our study points to the clinical significance of urinary metabolomics
profiling in pregnant women as a valuable tool for predicting PE. This approach offers
a noninvasive alternative, particularly beneficial for individuals with limited access to
traditional monitoring methods. However, further research is required to investigate
the relationship between the risk score and the timing of onset, ultimately refining our
predictive capabilities. The ability to identify high-risk patients early on allows for timely
interventions, such as low-dose aspirin, which can help mitigate potential complications
associated with PE.

5. Conclusions

Our study demonstrates the efficacy of maternal urinary metabolomics profiling as a
noninvasive approach for predicting the risk of PE during the first and second trimesters of
pregnancy. The robustness of our modeling, which incorporates diverse racial groups and
maternal ages, coupled with the simplicity of sample acquisition, enhances its potential for
clinical development and practical application.

This prediction tool serves as a valuable reference for early diagnosis of PE in pregnant
women, enabling timely and targeted interventions to ensure the safety of both the mother
and the fetus. By monitoring the biomarkers and exploring potential enrichment pathways
of metabolites, we gain new insights into the pathophysiological mechanisms underlying
abnormal fetal development and adverse pregnancy conditions, including PE.

The use of maternal urinary metabolomics profiling offers a promising avenue for
further research and clinical implementation. Its noninvasive nature and ability to provide
valuable predictive information make it a valuable tool for healthcare providers in manag-
ing and monitoring high-risk pregnancies. Through ongoing studies and investigations,
we can continue to advance our understanding of PE and develop effective strategies to
improve pregnancy outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13060715/s1, Figure S1: The sample distributions in the cohort.
Charts of urine collection timepoints for the SHC cohort. Each line represents an individual patient.
Diamonds and triangles indicate sample collection and delivery dates, respectively. Figure S2: Distri-
bution of individual samples in partial least-squares discriminant analysis based on 8341 features as
a function of the PE outcomes. The two orthogonal components with most of the inertia are shown.
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populations after creatinine correction. Figure S5: The importance of the seven metabolites in our PE
risk model with the creatinine normalization method Figure S6: The metabolite-metabolite interaction
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