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ABSTRACT
Noninvasive methods to diagnose rejection of renal allografts are unavailable. Mass spectrometry followed
by multiple-reaction monitoring provides a unique approach to identify disease-specific urine peptide
biomarkers. Here, we performed urine peptidomic analysis of 70 unique samples from 50 renal transplant
patients and 20 controls (n � 20), identifying a specific panel of 40 peptides for acute rejection (AR). Peptide
sequencing revealed suggestive mechanisms of graft injury with roles for proteolytic degradation of uro-
modulin (UMOD) and several collagens, including COL1A2 and COL3A1. The 40-peptide panel discriminated
AR in training (n � 46) and test (n � 24) sets (area under ROC curve �0.96). Integrative analysis of
transcriptional signals from paired renal transplant biopsies, matched with the urine samples, revealed
coordinated transcriptional changes for the corresponding genes in addition to dysregulation of extracellular
matrix proteins in AR (MMP-7, SERPING1, and TIMP1). Quantitative PCR on an independent set of 34
transplant biopsies with and without AR validated coordinated changes in expression for the corresponding
genes in rejection tissue. A six-gene biomarker panel (COL1A2, COL3A1, UMOD, MMP-7, SERPING1, TIMP1)
classified AR with high specificity and sensitivity (area under ROC curve � 0.98). These data suggest that
changes in collagen remodeling characterize AR and that detection of the corresponding proteolytic deg-
radation products in urine provides a noninvasive diagnostic approach.
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Despite an improvement in renal allograft survival re-
flecting advances in immunosuppressive medica-
tions,1,2 a critical unmet need in patient care is the
requirement for sensitive and graft-etiology-specific,
noninvasive methodologies for monitoring transplant
recipients.3 Expression analyses of urine immune me-
diators,4 peripheral blood samples, and transplant bi-
opsies5,6 support that distinct molecular pathways can
define the injury of acute rejection (AR). Some of the
concerns relating to biomarker discovery in urine lie
with the confounding effect of proteinuria and high-
abundance plasma proteins from nonspecific injury
(which also occurs in AR). In this study, we have cho-
sen to only analyze naturally occurring peptides in
urine samples from transplant patients for three rea-
sons: (1) because the roughly equal mass of protein
and peptide in urine translates into at least a ten-fold

greater molar abundance of peptides, urinary peptides
provide a fertile ground for biomarker discovery; (2)
urinary peptide analysis, unlike intact urinary pro-
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teomics analysis, is not hampered by the presence of highly abun-
dant urinary proteins that can obscure the discovery of more in-
formative lower abundance biomarker proteins7; and (3) analysis
of urinary peptides is relatively easier than the analysis of complex
tissues such as biopsy and blood because one-dimensional HPLC
separation is sufficient for the analysis of �21,000 urine peptides.7

An additional important confounder for AR diagnosis and
management is BK nephritis. To address these issues, this study
performed noninvasive, urine peptidomic analysis of 70 unique
urine samples, collected from renal transplant patients and
controls, by liquid chromatography and mass spectrometry
(LC-MS), followed by multiple reaction monitoring (MRM)
verification, on five different cohorts, including samples with
nonspecific proteinuria, BK nephritis, and vyuria.

To explore the relevance of altered urinary peptide abun-
dance, we also performed integrated transcriptomic analysis
on matching biopsy microarrays, paired with the urine sam-
ples, available in the Sarwal Lab (GEO, GSE14328). Quantita-
tive real-time PCR (Q-PCR) verified significant overlapping
genes in an independent set of 34 biopsy samples.

Our results indicate that disease-specific alteration of pro-
teolytic and antiproteolytic activities is the underlying mecha-
nism by which these urine peptide biomarkers are generated in
graft rejection. To our knowledge, this study represents the
first study that analyzed urinary peptidomic and matching re-
nal biopsy transcriptomic analyses, which will help in elucidat-
ing the pathophysiological relationships between our nested
urine peptide biomarkers and allograft proteolytic networks in
vivo in renal allograft diseases.

RESULTS

Sample Characteristics
The overall study design for the peptidomic urine analysis is
shown in Figure 1. Seventy unique urine samples were ana-

lyzed from the following five cohorts: pediatric kidney trans-
plant patients with biopsy-proven acute allograft rejection
(AR, n � 20), stable allograft with normal protocol biopsies
(STA, n � 20), BK virus nephropathy with vyurina (BK, n �
10), nonspecific proteinuria with native renal disease (biopsy-
proven nephrotic syndrome; NS, n � 10), and healthy age-
matched volunteers (HC, n � 10). Samples were split into
training sets (n � 46) for urine peptide discovery, and test sets
(n � 24) (sample demographics in Supplementary Table 1) for
urine peptide prediction and verification.

Discovery of a Urine Peptide Panel for AR by LC-
Matrix-Assisted Laser Desorption/Ionization
A total of 20,937 unique peptide peaks with distinct m/z and
HPLC fractions were resolved in the 900- to 4000-Da range.
Prediction analysis by a nearest shrunken centroid (NSC) al-
gorithm8 was performed, and 6-fold internal crossvalidation
analysis led to the discovery of a set of 630 peptide features with
the lowest classification error (Supplementary Figure 1). Dis-
criminant class probabilities and Gaussian linear discriminant
analysis (LDA) were performed for each sample8 (Supplemen-
tary Figure 2) in both sample sets and resulted in misclassifi-
cation of only 2 of the 24 samples in the test set. To find a
predictive biomarker panel of optimal feature number, various
classifiers were tested for their spread of distribution and good-
ness of the separation (Figure 1B and Supplementary Figure 3).
Linear discriminant probabilities of a biomarker panel of 53
peptide peaks was sufficient for goodness of separation of the
clinically relevant transplant categories (AR, STA, and BK) in
the training and the test sample sets (Figure 2, A and B). This
biomarker panel classified the AR samples with 96% overall
agreement with clinical diagnosis of AR in the training set (P �
3.2 � 10�6 by Fisher exact test) and 83% agreement with clin-
ical diagnosis of AR in the test set (P � of 0.0027 by Fisher exact
test). When all 70 samples were clustered by unsupervised
analysis of their peptide abundance across the 53 peak features,
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Figure 1. Peptidomics approach for biomarker discovery. (A) Schematics for peptidomic analysis of naturally occurring urinary
peptides. (B) Study design for the urine peptide biomarker discovery.
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all AR samples, save one, co-clustered, and importantly, all of
the non-AR samples (STA, BK, NS, and HC) clustered dispar-
ate from the AR sample cluster (Figure 2C). Interestingly, the
STA samples separated into two clusters, suggesting that STA
samples might harbor two subclasses at the urine peptide level.
On the basis of the discriminant-analysis-derived prediction
scores for each sample, a receiver operating characteristic
(ROC) curve was constructed to evaluate the testing perfor-
mance of our peptide biomarker panel9,10 and resulted in area
under the curve (AUC) values of 0.97 and 0.96 for the training
and the test set, respectively (Figure 3A).

Identification of AR-Specific Urine Peptides
Manual review of the biomarker panel and associated mass
spectrometry (MS) spectra interpreted and de-isotoped the 53
MS peak features, which could be mapped to 40 unique urine
peptides and were further identified by matrix-assisted laser
desorption/ionization (MALDI)-time-of-flight (TOF)/TOF
and LTQ Orbitrap MS/MS analysis. In general, the naturally
occurring peptides are more difficult to study with current
standard mass spectrometric search engines because of the dif-
ficulty in complexity reduction in the search space with the
knowledge of peptide-ending amino acids. For those peptides
unable to be identified by MS/MS analysis, we are currently

following up to scale up the purification of these peptides to
have sufficient quantity for protein identification using the Ed-
man sequencing approach. We grouped the identified peptides
according to their common protein precursor and computed
the medians of LC-MS measurements according to sample cat-
egories. The peptides were found to map to nine different pro-
teins, eight of which belonged to the collagen family (COL1A1,
COL1A2, COL3A1, COL4A3, COL4A4, COL4A5, COL7A1,
COL18A1) and uromodulin (UMOD). When MS/MS analysis
was extended to the original 630-peptide feature set, 142 urine
peptides were identified, again with predominant presence of
collagen peptides (n � 47) and UMOD peptides (n � 16)
(Figure 4, A and B). The UMOD peptide biomarker cluster
discovered in this study spans from serine residue 589, follow-
ing arginine residue 588, and to lysine residue 607 (Figure 4C).
Little is known about the metabolic pathway of this C-terminal
peptide and its biologic role after UMOD is shed from the
apical plasma membrane into the tubule lumen. UMOD, the
most abundant urinary protein in mammals, has recently been
shown to be significantly lower in abundance in urine samples
from patients with renal transplant rejection.11 UMOD pep-
tides analyzed in pooled urine samples have also been found to
be significantly reduced in patients with transplant rejection
compared with patients without rejection.7 This study con-
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Figure 2. Statistical analyses of the peptide biomarker panel. (A) The discriminant of the peptide biomarker panel for the training
(upper) and testing data (lower) probabilities for all transplant samples were calculated from the LDA. The maximum estimated
probability for each of the wrongly classified samples is marked with a circle. Two of the 46 samples in the training set and 4 of the 24
samples in the test set were misclassified, giving a correct classification rate of 96% in the training set and 83% in the test set. (B) Left
panel: Modified 2 � 2 contingency tables were used to calculate the percentage of classification that agreed with clinical diagnosis for
the biomarker panel. P values were calculated with Fisher’s exact test. Right panel: A prediction of AR from the non-AR phenotype (a
so-called “two-class” prediction) was used to assess the performance of the biomarker panel in the classification of unknown samples.
STA and BK were combined into one group as “NON-AR.” Fisher exact test was to compute the P value for the blind test. (C)
Unsupervised clustering based on the peptide biomarker panel was used to construct a heat map in which the colors indicate the
intensity of peptide concentration by LC-MALDI: red indicates high peptide abundance and green indicates low peptide abundance
in the comparative analysis. It can be seen that by unsupervised analysis, the AR samples, save one, all co-cluster together and all of
the non-AR samples cluster together. Modified 2 � 2 contingency tables were used to calculate the percentage of unsupervised
clustering that agreed with clinical diagnosis for the biomarker panel. P values were calculated with Fisher’s exact test.
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firms the results that UMOD peptides are much lower in indi-
vidual urine samples taken from patients when the filtering
kidney has ongoing AR. Although the significance of these
findings is unclear at present, a recent genome-wide associa-
tion study has identified significant single-nucleotide poly-
morphism associations with chronic kidney disease at the
UMOD locus.12

Interestingly, all of the identified UMOD and collagen urine
peptides showed much lower abundance during AR when com-
pared with other samples, with overall lower abundance in trans-
plant patients when compared with nontransplanted patients
(NS) and healthy controls (Supplementary Figure 4). Sequence
alignment analysis of the collagen and UMOD peptides were
found to line up by forming clusters within either the C- or N-
terminal end with ladder like truncations at the opposite ends,
suggesting that there is likely disease-specific proteolytic degrada-
tion of the parent protein. Similar to the proteolytic degradation
of urine proteins in AR, serum proteins have also been found to
show differences in degradation in cancer.13

MRM Verification of Selected Urine Peptides
To verify the presence and quantify differences in peptides be-
tween AR and non-AR groups, MRM was performed on two se-
lected peptides14 [UMOD1 (1679.98 Da) and UMOD2 (1911.07

Da); Figure 3] on all 70 samples. The box-
whisker graphs in Figure 3B illustrate the
spread of the distribution of the MRM mea-
surements in AR (n � 20), STA (n � 20), BK
(n � 10), NS (n � 10), and HC (n � 10)
sample categories for peptides with UMOD
1680.98 and 1912.07 Da, respectively. As seen
in Figure 3B (upper panel, left-hand side),
similar to the results obtained by LC-MALDI,
the abundance of UMOD peptide 1679.98
was significantly lower in AR (P � 0.0003),
and as seen in Figure 3B (upper panel, right-
hand side), the abundance of UMOD 1911
was also significantly lower in AR (P �
0.0006) when compared with all other
non-AR categories. ROC analysis to test the
diagnostic ability of the two UMOD peptide
biomarkers for AR was seen in terms of AUC.
AUCs for UMOD1 and UMOD2 were 0.83
and 0.74, respectively.

Integrated Analysis of Matched
Samples: Transcriptional Analysis of
Biopsy AR and Peptidomic Analysis
of Urine AR
Because urine is an ultrafiltrate of the kid-
ney, we hypothesized that the alteration of
the urinary proteins and peptides in urine
may relate to processes occurring directly
in the kidney. To address this we analyzed
archived microarray data in the Sarwal Lab

(GSE14328) on matched kidney biopsies (20 AR and 20 STA;
taken at the time of urine collection, before any treatment in-
tensification for AR) for expression differences between AR
and STA samples for the corresponding UMOD and the colla-
gen genes. We also looked for any expression differences in
extracellular matrix proteins in AR, because some of these have
been previously demonstrated to be differentially expressed in
AR.15 We observed that whereas UMOD gene expression in AR
biopsy was significantly lower in AR [false discovery rate
(FDR) � 0.02%; similar results to the low UMOD peptide
abundance in AR urine], the three collagen genes (COL1A2,
FDR � 0.18%; COL3A1, FDR � 0.67%; COL4A1, FDR �
1.82%) were upregulated in AR (different from low collagen
peptide abundance in AR urine). Gene expression for matrix
metalloproteinase-7 (MMP-7; FDR � 0.03%), tissue inhibitor
of metalloproteinase 1 (TIMP1; FDR � 24%), and the serpin
peptidase inhibitor (SERPING1; FDR � 33%) was higher in
AR when compared with STA biopsies, although only MMP7
expression was significant.

We performed Q-PCR in biopsies from a separate set of 34
kidney biopsies (14 AR, 10 STA, and 10 healthy kidney donor
biopsies) for UMOD; the most significant collagen genes in
rejection, namely COL1A2 and COL3A1; as well as all MMP7,
SERPING1, and TIMP1 (Figure 5A). The Q-PCR results vali-
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Figure 3. Discovery and verification of AR-specific peptides. (A) Discovery of the
40-peptide biomarker panel and their performance on the training set (top panel) and
the test set (bottom panel) using ROC analysis. (B) MRM analyses of the two UMOD
peptide biomarkers (top panels). The distribution of MRM signals were analyzed by
box-whisker graphs according to the sample categories. The boxes are bound by 75th
and 25th percentiles of the data, and the whiskers extend to the minimum and
maximum values. ROC analysis (bottom panel) of the classification performance of the
two UMOD peptide biomarkers. When ROC analysis was performed to test the
diagnostic accuracy of the two UMOD peptide biomarkers for AR, the AUCs were
computed as 0.83 for the UMOD 1679.98-Da peptide and 0.74 for the UMOD
1911.07-Da peptide.
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dated that the six genes had statistically significant expression
differences in AR, with similar results between the microarray
and Q-PCR; lower gene expression for UMOD in AR (P �
0.011); and higher gene expression for COL1A2 (P � 0.027),
COL3A1 (P � 0.013), MMP7 (P � 0.013), SERPING1 (P �
0.005), and TIMP1 (P � 0.013) in AR when compared with

samples without AR (Figure 5A). The im-
portance of these pathways is underscored
by the finding that LDA can also use the
gene expression values of the six genes in
biopsy AR tissue (ROC curve value of 0.98;
Figure 5B) to accurately classify a rejection
episode similar to the results obtained from
analysis of the corresponding urine pep-
tides (Figure 3B, lower panel). Interest-
ingly, irrespective of the confounder of BK
virus, biopsy UMOD gene expression and
urinary peptide abundance are signifi-
cantly lower in AR, whereas biopsy collagen
gene expression is significantly higher in
AR and collagen peptide abundance in re-
jecting urine is significantly lower. The dys-
regulation of collagen expression in the re-
jecting graft and altered proteolysis of
collagens in the urine may provide novel
insight into the cascade of events that
prime a graft for chronic injury and fibrosis
after an AR episode (Figure 6).

DISCUSSION

Proteomic and peptidomic analysis of urine
collected from healthy individuals (22 mg
peptides in urine per day)16and patients with
renal disease have identified more than 1500
different proteins11,17,18 and over 100,000 dif-
ferent peptide biomarkers19 in health and dis-
ease.20 This is the first study of an integrated
analysis of the urine peptidome and the bi-
opsy transcriptome in graft rejection that un-
covers that overlapping key gene and peptide
pathways can be jointly dysregulated in AR.
The resultant alterations in the abundance of
selected genes and the peptide products of the
corresponding proteins can highlight poten-
tial mechanisms of graft injury in rejection.
Disease-specific alterations of gene transcrip-
tion in the tissue (by array and Q-PCR) and a
change in the balance of proteolytic and anti-
proteolytic activities in urine appear to be im-
portant mechanisms resulting in an altered
pattern of a specific panel of urinary peptides
in AR.

There are at least 28 different human
collagens that represent approximately 25% of the total pro-
tein content of mammals,21 but in the kidney type I and III
collagen are most abundant, whereas type IV collagen is a ma-
jor component of basement membranes.22 The increase in the
aminoterminal and carboxy terminal propeptides from the
procollagen of types I, III, and IV during collagen anabolism

1. COL1A1 1235.56 APGDRGEPGPPGP
2. COL1A1 1251.55 APGDRGEPGPPGP
3. COL1A1 1322.57  APGDRGEPGPPGPA
4. COL1A1 1316.59  DAGPVGPPGPPGPPG
5. COL1A1 1409.66 GPPGPPGPPGPPGPPS
6. COL1A1 2048.92 NGDDGEAGKPGRPGERGPPGP 
7. COL1A1 2064.91 NGDDGEAGKPGRPGERGPPGP 
8. COL1A1 2192.97       NGDDGEAGKPGRPGERGPPGPQ
9. COL1A1 2362.12     GKNGDDGEAGKPGRPGERGPPGPQ
10. COL1A1 2378.10     GKNGDDGEAGKPGRPGERGPPGPQ
11. COL1A1 2645.24  GPPGKNGDDGEAGKPGRPGERGPPGPQ
12. COL1A1 1709.79  PPGEAGKPGEQGVPGDLG
13. COL1A1 2031.95  PPGEAGKPGEQGVPGDLGAPGP
14. COL1A1 2221.97      ADGQPGAKGEPGDAGAKGDAGPPGP
15. COL1A1 2205.99      ADGQPGAKGEPGDAGAKGDAGPPGP 
16. COL1A1 2277.01      ADGQPGAKGEPGDAGAKGDAGPPGPA
17. COL1A1 2293.01      ADGQPGAKGEPGDAGAKGDAGPPGPA
18. COL1A1 2617.15  GPPGADGQPGAKGEPGDAGAKGDAGPPGPA
19. COL1A1 2086.93            EGSPGRDGSPGAKGDRGETGPA
20. COL1A1 2157.96           AEGSPGRDGSPGAKGDRGETGPA
21. COL1A1 3014.41 ESGREGAPGAEGSPGRDGSPGAKGDRGETGPA
22. COL1A1 1266.58  SPGPDGKTGPPGPA
23. COL1A1 2129.99      DGKTGPPGPAGQDGRPGPPGPPG
24. COL1A1 2017.93  GRPGEVGPPGPPGPAGEKGSPG
25. COL1A2 2081.94 DGPPGRDGQPGHKGERGYPG 
26. COL1A2 2195.99 NDGPPGRDGQPGHKGERGYPG
27. COL2A1 1861.85  SNGNPGPPGPPGPSGKDGPK
28. COL3A1 1738.76  NDGAPGKNGERGGPGGPGP
29. COL3A1 2008.93  DGESGRPGRPGERGLPGPPG
30. COL3A1 2079.92  DAGAPGAPGGKGDAGAPGERGPPG
31. COL3A1 2565.18 GAPGQNGEPGGKGERGAPGEKGEGGPPG 
32. COL3A1 2743.24  KNGETGPQGPPGPTGPGGDKGDTGPPGPQG
33. COL4A1 1424.66  PGQQGNPGAQGLPGP
34. COL4A2 1126.51  GLPGLPGPKGFA
35. COL4A3 1161.52 GEPGPPGPPGNLG
36. COL4A4 1218.55 GLPGPPGPKGPRG
37. COL4A5 1144.52  GPPGPPGPLGPLG
38. COL4A5 1269.53  PGLDGMKGDPGLP
39. COL4A5 1733.76 GIKGEKGNPGQPGLPGLP  
40. COL4A6 1158.52  GLPGPPGPPGPPS 
41. COL5A1 1748.82  KGPQGKPGLAGMPGANGPP
42. COL7A1 1690.80 PGLPGQVGETGKPGAPGR
43. COL9A1 1732.84  KRPDSGATGLPGRPGPPG
44. COL11A1 1441.64  GPPGPPGLPGPQGPKG
45. COL11A1 1828.84  DGPPGPPGERGPQGPQGPV 
46. COL17A1 1368.62  LPGPPGPPGSFLSN
47. COL18A1 1142.51 GPPGPPGPPGPPS

1. UMOD 982.59 VLNLGPITR
2. UMOD 1047.48 SGSVIDQSRV
3. UMOD 1211.66           DQSRVLNLGPI         
4. UMOD 1225.69 SRVLNLGPITR
5. UMOD 1324.76          IDQSRVLNLGPI
6. UMOD 1423.83 VIDQSRVLNLGPI 
7. UMOD 1468.82           DQSRVLNLGPITR
8. UMOD 1510.87 SVIDQSRVLNLGPI
9. UMOD 1567.91 GSVIDQSRVLNLGPI
10. UMOD 1581.91          IDQSRVLNLGPITR
11. UMOD 1654.91 SGSVIDQSRVLNLGPI
12. UMOD 1680.98 VIDQSRVLNLGPITR
13. UMOD 1755.96 SGSVIDQSRVLNLGPIT
14. UMOD 1768.01 SVIDQSRVLNLGPITR
15. UMOD 1912.07 SGSVIDQSRVLNLGPITR
16. UMOD 2040.16 SGSVIDQSRVLNLGPITRK

BA

C Human UMOD precursor 

Figure 4. Mapping of collagen and UMOD peptides in the urine. Identified urine
peptide biomarkers yielded clusters of overlapping (A) collagen and (B) UMOD pep-
tides (mass/charge ratio, MH�). “P” in red indicates 4-hydroxyproline. Peptides in
brackets derive from the same region of the same precursor proteins. Because the
genes labeled in red were significantly regulated in microarray data, we tested them by
Q-PCR. (C) Human UMOD precursor. Recent MS analyses50 proved that C-terminal
cleavage of the precursor, which has 640 amino acids, occurred after phenylalanine
residue 587. Because part of the C-terminal peptide cleaved from the UMOD precur-
sor, the UMOD peptide biomarker cluster (colored in red) discovered in this study
spans from serine residue 589, following arginine residue 588, and to lysine residue
607.
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Figure 5. A gene panel specific for AR. (A) The distribution of COL1A2, COL3A1,
MMP-7, SERPING1, TIMP1, and UMOD genes’ Q-PCR measurements in kidney biopsy
were analyzed by box-whisker graphs. (B) ROC analysis was performed to evaluate the
performance of the six-member RNA biomarker panel classifying AR from STA. The
plotted ROC curve is the vertical average of the 500 bootstrapping runs, and the boxes
and whiskers plot the vertical spread around the average.
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and later decrease in the collagen-derived urinary naturally
occurring peptides during collagen catabolism suggest that in-
creased turnover of renal collagens23–26 may be valuable bi-
omarkers for noninvasive diagnosis of the rejection process in
the kidney. The upregulation of extracellular matrix regulators
(MMP-7, SERPING1, and TIMP1) also supports the hypoth-
esis of tissue remodeling at the time of AR. The observance of
high MMP-7 expression in the kidney at the time of AR has also
been previously reported in chronic kidney rejection,27 human
kidney aging,28 and a rat renal AR model.29 MMP-7 is a colla-
genase-related connective-tissue-degrading metalloproteinase
and plays a role in the breakdown of extracellular matrix in
normal physiologic processes, tissue remodeling during inju-
ry,30 and neutrophil influx to sites of injury.31 SERPRING1
regulates leukocyte trafficking and complement (inactivating
C1r, C1s, MASP2, and C3b proteases),32 which is also locally
regulated in the kidney during ischemia reperfusion injury.33

Similar to the finding in this study, SERPING1 has previously
been shown to be regulated in the graft during AR.34 Tissue-
specific inhibitors of metalloproteinases are endogenous,
specific inhibitors that bind and inhibit matrix metallopro-
teinases.35 TIMP1 is a physiological inhibitor of the matrix-
degrading enzymes, collagenases, gelatinase, and stromely-
sin and plays a major role in the inhibition of matrix
degradation. Upregulation of TIMP1 mRNA and protein has
been previously reported in different models of renal dis-
ease36 – 41 and in human sclerotic glomeruli.42 The increased
expression of TIMP1, a collagenase inhibitor, may be a reason
for the reduced activity of collagenases and subsequent re-
duced breakdown of tissue collagen, leading to the observance
of increased graft collagen expression and reduced collagen
urine peptides in graft rejection. Thus, altered collagen and
extracellular matrix turnover in graft rejection with altered
regulation of collagenases in the graft, as seen in independent
data sets by microarray and Q-PCR, may be critical pathways
that link AR injury with the observed increased downstream
clinical risk of chronic injury and graft fibrosis.43,44

In conclusion, the analysis of the natu-
rally occurring urinary peptides using the
LC-MS method in kidney transplant rejec-
tion is a novel approach because it provides
AR injury-specific peptide biomarkers and
also highlights local injury mechanisms in the
inflamed tissue relating to a cascade of colla-
gen proteins, which may be important har-
bingers of chronic graft injury. Future pro-
spective studies of these urine peptide
biomarkers by antibody-based or quantita-
tive MS-based approaches are needed to op-
timize this approach for clinical application
and to test the validity of these urinary pep-
tides for prediction of acute and chronic graft
injury.

CONCISE METHODS

Urine Samples
Seventy unique urine samples from 50 pediatric renal transplant re-

cipients (20 biopsy-proven AR, 20 STA, 10 BK), 10 age-matched

healthy controls (HC), and 10 pediatric patients with nonspecific pro-

teinuria from native renal disease due to nephrotic syndrome (NS; to

control for nonspecific renal injury) were collected at Lucile Packard

Children’s Hospital at Stanford University from 2004 to 2006. Details

on patient age, gender, and other transplantation-related clinical in-

dicators are given in Supplementary Table 1. Informed consent was

obtained from all patients and the Stanford University Institutional

Review Board approved the study.

Urine Collection, Storage, and Processing
Second-morning void midstream urine samples (50 to 100 ml) were

collected in sterile containers and were centrifuged at 2000 � g for 20

minutes at room temperature within 1 hour of collection. The details

of urine processing and preparation of peptide extraction and fraction

are reported elsewhere.7

Peptidomic Data Analysis
We used the approach of ion mapping,45,46 in which biomarker can-

didate MS peaks are selected on the basis of discriminant analysis and

then targeted for MS/MS sequencing analysis to obtain protein iden-

tification. We have developed an informatics platform, “MASS-Con-

ductor,”7 which contains an integrated suite of algorithms, statistical

methods, and computer applications to allow for signal processing

and statistical analysis in LC-MS-based urine peptide profiling. The

peaks are located in the raw spectra of the MALDI data by an algo-

rithm that looks for sites (m/z values) for which the intensity is higher

than the estimated average background and the approximately 100

surrounding sites, with peak widths approximately 0.5% of the cor-

responding m/z value. The binned LC-MALDI MS peak data (20,937

m/z values) obtained for all 70 samples were analyzed separately for

the training sample set (n � 46) for discovery of discriminant biomar-

kers using algorithms8 of NSC, 6-fold crossvalidation analyses, and
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Figure 6. A proposed mechanism of fibrosis caused by AR as indicated by the
observations of increased collagen gene transcription in the rejection biopsy and
reduced collagen peptides in the urine during graft rejection.
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Gaussian LDA. The predictive capabilities of the 53 most discriminant

peptide peaks were used to blindly test for differentiating AR, STA,

and BK samples in the test set (n � 24). To control the number of false

significant features found during NSC mining, we permutated the

data set 500 times to calculate the global FDR.47

MRM Assay for Peptide Marker Verification
Stable isotope-labeled peptides (with a 13C-labeled amino acid) were

synthesized and used as internal standard peptides. Each urine pep-

tide sample, prepared as described above, was diluted 10-fold with

10% acetonitrile/0.1% formic acid and spiked with the internal stan-

dard peptide to a final concentration 0.1 �M. Peptides were resolved

in an HPLC equipped with a Polaris C18 column (50 � 20 mm, 3 �M,

6-minute gradient elution; Buffer A: 0.1% formic acid in water; Buffer

B: 0.1% formic acid in acetonitrile; flow rate of 200 �l/min). A triple

quadrupole mass spectrometer was used. The data were assessed and

visualized by an ROC curve ROCR package.10

Integrated Analysis of Peptidomic Data in Urine and
Microarray Data from Matched Transplant Biopsies
Affymetirx HU133 plus 2 GeneChips on matched kidney transplant

biopsies (20 AR and 20 STA) have been previously performed in the

Sarwal Lab (National Center for Biotechnology Information GEO

database GSE14328). Raw expression data were preprocessed and

normalized using dChip software.48 Supervised, two-class unpaired

Significance Analysis of Microarray49 analyses were applied to calcu-

late FDR for differences in expression of the corresponding UMOD

and the collagen genes in rejection. Additionally, we searched for any

differences in the expression of extracellular matrix proteins (TIMP1,

SERPING1, and MMP-7) in the rejecting graft.

RNA Preparation and Q-PCR
Total RNA was extracted from kidney biopsy samples using TRIzol

reagent (Invitrogen Corporation, Carlsbad, CA) and later was DnaseI

treated and purified using the RNeasy mini kit according to the man-

ufacturer’s protocol (Qiagen, Valencia, CA). cDNA was synthesized

from 250 ng of RNA using the RT2 First Strand Kit (SABioscience

Corporation, Frederick, MD). Q-PCR reactions were performed on 5

ng of cDNA using RT2 SYBR Green/ROX PCR master mix and com-

mercially available primers: PPH12000A-200 for UMOD,

PPH00771A-200 for TIMP1, PPH18747E-200 for SERPING1,

PPH00809E-200 for MMP-7, PPH01918B-200 for COL1A2,

PPH00439E-200 for COL3A1, PPH20687A-200 for COL4A1, and

PPH05666E-200 for 18S rRNA (SuperArray Bioscience Corporation,

Frederick, MD). All RNA samples were analyzed in duplicate and

normalized relative to 18S rRNA levels.
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