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High Throughput Screening Informatics

Xuefeng Bruce Ling’

Biotechnology Core, Lucile Packard Children's Hospital, Stanford Medical Center, Stanford University, CA, USA

Abstract: High throughput screening (HTS), an industrial effort to leverage developments in the areas of modern robot-
ics, data analysis and control sofiware, liquid handling devices, and sensitive detectors, has played a pivotal role in the
drug discovery process, allowing rescarchers to efficiently screen millions of compounds to identify tractable small mole-
cule modulators of a given biological process or disease state and advance them into high quality leads. As HTS through-
put has significantly increased the volume, complexity, and information content of datasets, lead discovery research de-
mands a clear corporate strategy for scientific computing and subsequent establishment ol robust enterprise-wide (usually
globat) informatics platforms, which enable complicated HTS work flows, facililate HTS data mining, and drive effective
decision-making. The purpose of this review is, from the data analysis and handling perspective, to examine key elements
in HTS operations and some essential data-related activitics supporting or interfacing the screening process, and outline
properties thal various cnabling software should have. Additionally, some general advice for corporate managers with sys-

tem procurement responsibilities is offered.

Keywords: HTS, data mining, sample bank, compound, drug target, lead discovery.

INTRODUCTION

The completion of the Human Genome Project has sig-
nificantly advanced our understanding of human biology and
the nature of many diseases, unraveling a plethora of novel
therapeutic targets. Modern high throughput methodologies
and robotics of remarkable efficiency and precision have
significantly accelerated the industrialization of the drug
discovery process, where millions of compounds are rou-
tinely screened to identify tractable chemical series (TS
hits) as starting points for drug design. Subsequently, HTS
hits are transformed into lead series with the requisite bio-
logical activity against the target of choice, and can serve as
tool compounds to understand the role of a particular bio-
chemical process in vivo,

As a brute-force approach and a complicated automated
industrial process, MTS “manufactures” unprecedented
amounts of experimental data -- usually observations about
how some biological enlity, cither proteins or cells, reacts to
the exposure of various chemical compounds in a relatively
short time. Due to the high cost, technical specialization and
operational sophistication, small molecule lead discovery
and the development of chemical research tools has been
limited to pharmaceutical or large biotech companies. Flow-
ever, there is a recent trend towards academic pursuit of
chemical screening due to the increasing availability of
screening facilities [1], Given the ever-increasing complexity
of HTS work flows and emergence of high content screening
technologies, innovative strategies of how to acquire and
streamline new functionalitics, evolve currently available
software solutions, and ultimately deliver cost-effective,
scalable and maintainable HTS computing platforms with
limited budget, are operationally essential. The purpose of
this review is, from the informatics perspective, to examine
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key elements and essential data-rclated activities supporting
or interfacing the screening process, outlinc requirements
and properties that various enabling scientific computing
systems should have, and offer some general advice for
managers with system procurement responsibilities, The
breadth of the discipline of MTS has made it necessarily to
constrain the scope and detail of this review in some arcas.
However, more detailed updates and additional supplemen-
tary information will be available online at hitp:/hts.stan-
ford.edu, o

HTS KEY ELEMENTS IN BOTH PROCESS AND IN-
FORMATICS

High-throughput screening is a critical link in the indus-
trialized lead discovery chain, Fig. 1 diagrams the key opera-
tional elements and database systems necessary (o support
HTS. Typically, once a druggable target has been selected
and prioritized for HTS by biologists with therapeutic area
expertise, biology and HTS groups collaborate to develop an
assay and transfer it to the HTS organization, HTS scientists
need to optimize assay protocols for high throughput auto-
mation, ensuring the following key requirements arc met: 1)
simplicity and robustness to allow unattended runs over ex-
tended periods, with constant quality, I1) potential for minia-
turization which saves compound and reagents by allowing
screening in high density plates, I1) production of a fluores-
eent, Juminescent, absorbance, radioactivity or other signal
amenable to detection with available plate reading systems.
The primary and confirmatory screens against the compound
coliection, which routinely comprises a million or more of
compounds of diversified structures, ideally lead to the iden-
tification of reproducible HTS hits. After compounds with
undesirable chemical properties have been removed, po-
tency, efficacy, and target selectivity are determined from
dose-response experiments and counter screening. Addi-
tional data pertaining to compound purity and PKDM prop-
erties are typically compiled into a lead information package
which is finally handed off to medicinal chemistry and the
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Fig. (1). Flow chart of HTS key elements.

therapeutic area where it provides the start point for future
lead optimization.

Obviously, the development, deployment and mainte-
nance of enterprise data handling systems are cssential to
cnable these complex HTS workflows and facilitate optimal
decision making under the various scenarios that may arise
in the HTS arena, Data management requitements include
real time tracking of information {ransactlions, efficient inter-
faces to other operational and seientific databases, and robust
storage of vast and diverse data sets including: I} compound
structures, 11) biological samples, 111} various types of con-
talners, 1V) assay definitions, V) results from single-
concentration and dose-response agsays, and VI) workflow
SOPs for assay/automation/inventory management. The in-
tegration of various information resources and interoperabil-
ity between different software applications and robotic in-
struments are not only important for HTS operations, but
also for mullidisciplinary teamwork with other corporate
functions including therapeutic areas, laboratory automation
group, sample bank, analytical/computational/medicinal
chemistry, scientific computing, and project teams. In gen-
eral, scientific computing should consider the informatics
elements outlined in Fig. 2, [2]: 1) a robust underlying Oracle
data model, 1) a well defined and structured meta data layer
organized as ontologies and implemented in XML or Oracle
to provide sufficient contexts for HTS data sets, I1T) fast data
entry tools that are capable of proccssmg large data sets and
utilize controlled vocabularies to maintain data integtity, IV)
fast and intuitive query tools, V) data navigation and teport-
ing interfaces, and VJ) intuitive visualization tools capable of
drilling multi-dimensional data sets for quality control, data-

base navigation and data mining. Similarly to the aftermath
of genome sequencing where special ontological algorithms
were essential to decode the genome [3], full exploitation of
HTS data require novel data mining methods to convert in-
formation into knowledge, and support elfective decision-
making,

“BUY VS BUILD”

“Buy vs Build” has been a constanl dilemma haunting
managers responsible for HTS data analysis [4]. There are
obvious advanlages to building ITS applications in house,
Through the software life cycle of business modeling, analy-
sis and design, implementation, (esting and final deployment,
the company ultimately owns a system tailored specifically
to its unique HTS processes. Additionally, the company re-
tains an internal software development team with domain
expertise to provide real time support and flexible customi-
zation, achieving substantial long term rcturn on investment,
However, given the complexity and dynamics of HTS opera-
tions, and budget/headeount constraing, development of a
complete custom solution through internal resources is often
impossible, even for large pharmaceutical companies.
Thanks to the HTS tech-boom and intensive vendor soflware
development, off-the-shelf software became available that is
designed to support HTS “out of the box”, Vendor lists (Ta-
ble 1), although not exhaustive, have been compiled and
tabulated against FTS workflow or integration needs. Albeit
at significant monetary cost, such software packages can
rapidly jumpstart HTS operations in a new institutional
setup, introduce best practices and standardized common
vocabularies for HTS business process management, remove
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customization bottlenecks, or satisfy pressing needs resulting
from newly acquired or developed HTS functionalities and
capabilities, However, these software packages are mass-
produced, each with some unique features, different strength
and limitations, and consequently contain generic content not
developed specifically for one particular organization or user
group. A marketed product may serve parts of the HTS proe-
ess well, but typically won’t deliver a complete solution.
Furthermore, special consideration must be given to down-
stream maintenance costs, which can be substantially larger
than the initial purchase. Any feature enhancement, customi-
zation, or version upgrade requires vendor consultation, and
product specific domain knowledge, which can lead to unex-
pected operational disruptions and unpredictable extra cost,
In reality, effective lead discovery informatics has to balance
both aspects of building proprietary vs licensing commercial
systems, and it is important to avoid squandering internal
programming resources by “reinventing the wheel” when a
viable commercial solution is available at reasonable cost,
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INTEGRATION OF ROBOTICS

The heavy use of robotic instrumentation characterizes
modern industrialization of the drug discovery process, and
large capital investments are defended not only based on
labor cost savings, precision and higher throughput, but also
by the financial gains associated with and shortening of drug
discovery time lines. Many modern robotics systems come
with some form of scheduling software in addition to in-
strument control software, Moreover, most, if not all, com-
mon robotic applications are designed for the Microsofl
Windows platform. Nonetheless interoperability belween
different robotic sysiems can be extremely challenging sim-
ply due to the proprictary nature of vendor software, and the
distribution, over time, of robotic applications on PC work-
stations with different Windows versions, Furthermore, due
to the standalone nature of much robotic software, lack of
proper integration with discovery Oracle databases, and plat-
form incompatibility between Windows Desktop applica-
tions and UNIX based enterprise applications, it is often im-
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Acitivitybase (IDBS) + + + + + A+ + + - - I hitp:/iwww.idbs.com/activity base/
Accelrys + + +* + + - - - + - - http://www .accelrys.com/products/accord/
Biosoft - - - - + + - - - - - hitp:/fwww.biosolt.com/
CambridgeSoft o + + + + + ; - - f hup://www.camsoft,com/
Daylight - . + - - - - - - - - hup://www.daylight.com
ChemAxon o R S P - - - o - htp://www.chemaxan.com
Elsevier MDL |+ + A+ + + + - - - - hitp:/rwww.mdli.com/
GraphPad Software - - - - + + - - - + - hup://www.graphpad.com/prism/
Genedata - - - + + + + | - - - hitp:/fwww.genedata.com/
Insightful (S plus) - - - - - - - - “ + - hitp:/www.insightful.com
Inforsense - - - - - - - - + . - http://iwww.inforsense.com
R project - - - - - - - - - + - hitp://www.r-project.orp/
Rescentris - - - - - - - - - - t hitp://www.rescentris.com/products.html
Systat software - - - - + + - - - + - hitp://www.systat.com/
SAS - - - - - - - - . + - htip://www.sas.com/
Symyx o R R A - - - ol ' http://www.symyx.com/
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TIBCO (Spotfire) - - - - - - - ; - - - hitp:/fwww.spotfire.com
Tripos - - + - - - - - - - 1 http:/iwww.tripos.com/
Walters - . - - - - - - - - I hitp://www.walers.com

possible lo retrieve real time information, track the transac-
tions of various business objects, and subsequently update
related records in corporale Qracle databases with the results
of the robotic operation, Sometimes, vendor robotic software
offers APls (application programming interfaces), usually as
Microsoft Visual Basic (VB) and ActiveX controls, which
can be extended to communicate (o external Oracle data-
bases. Nevertheless, the launch of the vendor application is
still an event driven effort, requiring manual input and caus-
ing operational bottlenecks if different robotic equipment
and enterprise Oracle based applications are required to work
interactively, Thanks to the advent of the Microsoft NET
framework, additional application development can be used
to “publish” the capability of a particular robotic Windows
application as a “web service” such that the business logic,
data and processes of any given robotic application can be
shared through a programmaltic interface across the corporate
network. Through the integration of the threc main robotic
specific components characteristic of automation platforms
(a robotic specific application, the hardware modules of the
mechanical system, and the module level software), the

NET integration application allows live data transactions
and Interoperability with server based enterprise applica-
tions, including Qracle databases, and any other equipment
vendor applications,

SAMPLE BANK AND COMPOUND MANAGEMENT

It can be argued that the impact of screening and the in-
tegrity of the screening data are only as good as the quality
ol the compounds being tested and the accuracy of the man-
aged compound information. Successful HTS campaigns
critically depend on the integration of sample bank function-
ality, both at the level of physical samples, structures, and
containers as well as the flow of the associated data and real
time tracking of the transactions [5]. Subsystems for chemi-
cal information management, sample registration, sample
inventory, and sample ordering/reordering are required to
prepare sample bank to support HTS operations and follow
up studies. It is essential that such systems and the underlin-
ing Oracle databases provide enterprise-wide access and
seamless integration with all HTS related databases and
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automation tools, Introduction of Oracle data cartridge tech-
nology through several vendors’ implementations has ulti-
mately relieved the bottleneck of the chemical information
management, allowing for custom indexing and searching of
ever increasing numbers of chemical structures in a similar
fashion (o text and numeric data. However, migration of leg-
acy systems to the Oracle cartridge technology demands ex-
ireme attention to detail including: a careful inventory of
current in house systems, identification of interdependencies,
and special treatment of a number of specific molecular and
chemical representation features such as stereochemistry,
tautomers, etc. Compound collections for screening are usu-
ally purchased from commercial sources, produced through
combinatorial chemistry processes, or internally synthesized
by medicinal chemists. A sample registration application
registers non-biological compound data for newly acquired
or synthesized compound lots and scamlessly integrates with
the inventory system. Sample storage and retrieval systems,
in particular those in production within large pharmaccutical
companies, have evolved into a fully automated process
where the inventory tracking system and sample dispensing
automation are directly linked. The inventory system tracks
the quantity of every sample in its various sample formats
and associated containers in the archive upon sample addi-
tion or depletion, To support plate-based screening and sub-
scquent data analysis, the inventory system also creates and
manages plate map information such as compound-well lo-
cation, sample molecular weight, and sample concentration
of the compounds. By linking to the inventory database,
sample ordering systems can allow the requester to view
real-time inventory information, such as available quantity
and format, and enables casy designation of the format in
which the requested sample is to be delivered, Through co-
ordination of concurrent requests and online negotiation with
sample bank staff, large numbers of compounds can be effi-
ciently delivered to global and multidisciplinary teams. Ul-
timately, the time and effort needed to access samples from
the sample archive can be greatly reduced,

ASSAY DATA CAPTURING AND ANALYSIS

The proprietary software shipping with many plate read-
ing instruments commonly limits the data output from HTS
assays to a resiricted number of characteristic signal(s) per
well. Both the deficient interoperability between HTS read-
ers and high throughput data capturing systems, and the in-
adequacy of available solutions that effectively standardize
the capture and reduction of data sets from complex kinetic
biological responses [6], have become major bottlenecks in
high throughput data capturing, Limited cooperation across
HTS communities, including HTS equipment vendors, has
hampered the formal introduction of rigorous data exchange
standards that could resolve this interoperability bottleneck.
As a result, it is not trivial to push the different reader output
formats to downstream HTS data management systems. To
accommodate this, instrument control software has to be
manually configured to export screening datasets as ASCII
text files that can be subsequently parsed by the data captur-
ing system, The introduction of new instruments or changes
to reader conlrol software requires either hard-coding of spe-
cial “parsers” or manual amendment of “reader templates”
used by the data capturing system, With morc-widespread
implementation of kinetic detection techniques to track cell
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signaling events, innovative multi-parameter analytical algo-
rithms are needed to standardize the reduction and extraction
of kinetic assay data for downstream processing,

Most HTS assays produce large numbers of individual
measurements with high inherent variability and errors.
Therefore, statistical methods are indispensable for efficient
analysis of such noisy data [7]. Although running assays in
duplicate has been recommended and can significantly re-
duce false positives and false negatives (hitp://iccb.med.
harvard.edu/screening/guidelines.htm [7]), time and cost
considerations have caused the routine generation of true
replicate measurements in primary scrcens to be relatively
rare across the HTS community, Control readings are essen-
tial to a well-designed assay, and ecvery assay should be
equipped with both plate-based and assay wide controls for
complete monitoring of assay quality, dynamic range, and
subsequent statistical normalization of signals to facililate
identification of reproducible hits. Special attention should
be given to the commonly used terminology of controls, in-
cluding “positive”, “negative”, “blank”, which can be highly
ambiguous and context-dependent. This can easily lead to
errors in computing normalized compound activities, mis-
communication between multidisciplinary teams, and long
term database storage confusion and contradictions, To re-
solve these potential Issues, and facilitate consistent data
processing, Fig. 3 proposes one set of terms (o describe
sereening well types, The expected signal levels of various
controls have been tabulated for better illustration of this
controlled vocabulary,

With continuous advances in server capabilitics, algo-
rithm development, and statistics packages, HTS scientific
computation can currently process vast amounts of HTS data
to calculale compound activity end values, perform routine
nonlinear regression for dose response and enzyme kinetic
parameters, and gauge assay reproducibility, performance,
and sensitivity, With the statistical analysis applications in
place, extensive validation of H'TS assays can facilitate deci-
sion making before committing to an HTS campaign. Qual-
ity control parameters can guide scientists Lo accept or reject
certain data sets and to keep process errors within acceptable
ranges, While not intended to be comprehensive, examples
of formulas (Table 2) commonly used in HTS, have been
complied for ecasy reference. For brute force primary and
confirmation screening, %Activity, %Activation for agonist
or Y%Inhibition for antagonist screcening respectively, are
usually the final end values of normalized compound activ-
ity. Both of the Z and B score methods normalize compound
signals without using controls under the assumption that
most compounds are inactive {8]. While harder to compute,
the B score method introduces row and column correction
and should be preferred if row or column biases are sus-
pected [7]. The signal to background (8:B) ratio describes
the dynamic range while the signal to noise (S:!N) ratio
serves ag a metric for the “signal strength” of an assay. The
higher the variability of an assay, the larger the S;B ratio
should be in order to qualify an assay for HTS. Both signal
window and Z-Factor [9] describe dynamic range of an as-
say, However, the Z-Factor evaluates the assay quality con-
sidering both the dynamic range and data variation, which
makes it a more rigorous statistical criterion when assessing
the suitability of an assay for HTS, It is acceptable practice
o exclude data outliers from statistical calculations, which
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Fig. (3). Controlled vacabularies proposed to describe HTS screening well lypes. The expected signal levels of various controls are tabulated

respectively.

increases the Z-factor value, If more than 2% of the control
wells, and/or more than 5% of compound wells are dis-
carded, a Z-factor should be considered artificially enhanced,
In assay reproducibility tests, minimum significant ratio
(MSR) and minimum significant difference (MSD) are im-
portant paramelers [or potency and efficacy evaluation re-
spectively. The potency of compounds derived from dose-
response experiments is typically represented by the EC50 or
[C50 value which is defined as the compound concentration
which produces 50% of the maximal response. The accuracy
of EC/IC50 values varies widely depending on the method-
ologies used (i.c. replication, curve fitting method), The most
common regression method for dose response curve fitting is
the four parameter logistic model (4PL), also called the Hill-
Slope model. When either the top or bottom asymptote is not
available as a result of the compound potency falling outside
the dosing range, 3PL model should be used to reduce fitting
error and improve the curve it In situations where experi-
ments cannot be repeated to yield better quality data, the data
analysis platform should offer more interactive curve fitting
and parameler options to report meaningful results. Because
of its relative independence of assay conditions, K; values
derived by the Cheng-Prusofl equation for simple competi-
tive assays can be more useful when comparing potency lev-
els than 1C50 values. The analysis of enzyme modulator

kinetics can be challenging due to enzyme mechanism com-
plications [10]. Non-linear filting of the Michaclis-Menton
equation derives enzyme kinetic parameters including Vi
and K,

INFORMATICS
SCREENING

ISSUES IN HIGH CONTENT

High content screening, including high-throughput analy-
sis of cellular and molecular images, has become an increas-
ingly powerful tool in lead discovery, allowing acquisition of
richer information around multiple biochemical or morpho-
logical pathways al the single-cell level at an carly stage in
the development of new drugs {11]. However, mature HCS
data handling solutions for efficient acquisition and process-
ing of large amounts of image data have yet to be developed
[12]. Current HTS data centers may no longer be suitable for
HCS data storage as a 1000-compound screen can easily
consume 0.5 TB of disk space [L1], Familiar statistical
measures of HTS like Z-factor and S:N ratios pre-suppose
one measurcment per well. Fence, they are no longer appli-
cable to multi-dimensional HCS datascts. All of this de-
mands a different data analysis strategy. A major unmet need
in the HCS field is the development of robust tools for image
processing in general and pattern recognition in particular,
enabling researchers to quickly quantify phenomena on the




HTS Data Handling

Combinatorial Chemistry & High Throughpui Screening, 2008, Vol. 11, No. 3 258

Table2. Examples of Common HTS Computing Equations and Formulas
Name Formula H1 Sl{f:ag(;ptcd Application Definition of Terms
¥ pmax: maximum response in the
Compound signal | “eConernd =| [~ Mo X % 100 Normalize the readout to the | assay; pmin: minimum response in
Moo ™ Mo controls the assay; Yobs: observed response
’ in the assay
Y — y G: s.d. of the plate raw measurement,
. - ;L Plate based compound signal | p: mean of the plate raw measure~
7, score = P
“ o normalization ment. Y: test compound raw meas-
urement
Rii Rij: the residual of the measurement
i/ , . for n particular plate row i and col-
B score £ i Plate baﬁgi::;;;ﬂ Zg:d signal umn j; MAD: median absolute devia-
MAD * tion which is a robust estimate of
spread of the residue values
Coeflficient of variation UV = g » 100 < 15% Measure the dispgrsion of the | 6:s.d of the signa!; u: mean of the
H measured signals assay signat
Sianal o noise S : N= vuum ‘u'mm Describe the "signal strength” of|
gl § o the assay
any
] Foan Describe the dynamic range of
3 : o, - ™
Signal to background . 2 the assay
/' s
. . Y Hine = i WB(o‘mM + Ol'n‘m) Describe the assay dynamic
Signal window SV = 2
Enaj win o range
(L1253
_ 30—1.17»,;1.' + 30".’.,M_,, Describe the assay qualily con
Z-Factor L=l > 0.6 sidering both dynamic range and
JLImepfr - ;Jmnﬂul data variation
3o, +30, st thossay qualy cone| o, |
P Z' N - L e N P“wa“ the assay qu lity con C-+: positive control; C-: negative
Z!-Factor >0.6 sidering both dynamic range and
‘b control
/.l{ e ,U e daty varintion
Minimum significant VISR = ‘ Ol(rd <10 Use in reproducibility test of | 64 standard deviation of the run
ratio Mol =14, e potency valucs difference in log-potency
Minimum significant £y . . Use in reproducibility testof | 6d: standard deviation of the run
difference MSD = 2ad <20 eflicacy values differcnce in efficacy
Relative EC/ICS50: "lop”, "bol" are
- ) | the fitted top and bottom ol the
Hitl-8lope model (four toygp == hot Fitting error = Uig t:’b:‘,"li: ﬁis;éifgggqaﬁzyb curve. Absolule EC/IC50" "top” and
parameter logistic model| V' = bot + g ¢ . “bot" are defined by the assay dy~

4PL)

[+ {x/ EC50y"

40% of EC/IC50

both asymptotes can be defined
by the data

namic range where "top" is the max
control level and *bot" is the min
control level

Hill-Slope model (three
parameter logistic model
rw

top = hot

}‘xb{)( + oy # wloprer
’ VA (x/ ECSD Y™™

Fitting error <
40% of ECNC50

Use to fit 8 dose-response curve
(o obtain the EC/IC50 when
cither asymplotes can not be

defined by the data and a fixed

value will be used instead

I the data do not define a top as-
ymplote, then fixing the top at 100%.
I the data do not define the botlom
asymptote, then {ixing the botlom at
%

Cheng~Prusofl (ligand-
binding)

' (I+[L)/ K,)

[§1F - Calculate Vmax and Km  |V: reaction rate; Vmax: max reaction
Michaelis and Menton w . , through the nonlinear regression] rate; [S]: substrate concentration;
lS ] + K iy analysis Km: Michaelis-Menton constant
¢ . o
ang . K = s Calculate Kl.\'mde'r c'onqmon of ) ;
Cheng-Prusoff i (1+ [.S']/ K ) competitive inhibition [S]): substrate concentration
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celiular and subccellular level and draw meaningful conclu-
sions from the derived visual data, Additional challenges,
including the cataloging of vast number of images, interop-
crating between HCS platforms and peripheral compound
inventory databases, and integrating HCS with other HTS
screening data, have yet to be resolved as well,

ELECTRONIC LABORATORY NOTEBOOKS

Today, lead discovery research activities, including ex-
perimental design, planning, and execution as well as data
collection, processing, and reporting, rely heavily on com-
puter systems. The initial drive for the laboratory notebook
to go “clectronic” came from the computerized chemical
information management arcna, and the use of HTS intro-
duced biologists to enterprise computing platforms. Recent
FDA encouragement of clectronic submission and the re-
laxation of its interpretation of salient regulations (21 CFR
part 11) has started to remove general concerns of whether
electronic records provide sufficient evidence of invention,
driving the widespread adoptlion and implementation of elec-
tronic laboratory notebook (ELN) systems across US phar-
maceutical companices [13, 14]. Current vendor implementa-
tions provide for the capture and management of chemical
structures and reactions, analytical data such as spectra,
chromalograms and parameters, the text of authored reports
and comments, spreadsheets and tables, images and draw-
ings, scans and other multimedia [files. Scientists can use
ELNs to capture, process, save and search notebook data in a
completely digital, networked environment, driving produc-
tivity and collaboration. However, in contrast to HTS and
sample management systems, an ELN mainly manages un-
structured data, While their data model! is well structured for
chemical structures and reactions, ELNs usually lack a rigor-
ous software framework for other data types. Thetefore,
interoperability and integration of ELNs with enterprise HTS
and sample management applications remains an unresolved
issue if ELNs are to unleash their full potential. With the
widespread use of ELNs and continuous developments from
the software vendors, BLNs arc expected to become fully
integrated, or even eventually merge with H'TS and/or sam-
ple bank applications, offering a “one-stop-shop” for scien-
tists to fullill their data analysis and management needs
across the complete spectrum of drug discovery.

FROM DATA TO KNOWLEDGE

Data mining aims to identily new patterns and deeper
insights once different types of datasets can interoperate with
cach other and data integrity can be managed rigorously.
When TS data continue to grow exponentially in size and
complexily, a major challenge is to empower scientists, who
may nol necessarily be computationally savvy, to navigate
diverse data in meaningful ways. In the current reality, only
computationally skilled individuals can exploit a broad range
of computational and statistical approaches to sort, drill and
report data.

One eflective means of exploring large datasets for ex-
pected or unexpected trends or outliers is to use visualization
techniques, Several commercial packages such as Spotfire™
Pro (TIBCO, USA) offer advanced data visualization capa-
bilities, which can be integrated for HTS quality control,
database navigation and data mining. However, the effec-
tiveness of rendering HTS data sets directly influences the
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outcome of the data visualization and subsequent mining
process. For comprehensive and effective data drilling
through visualization interfaces it Is imperative lo compile
data sets from different Oracle tables or even different Ora-
cle instances such that relevant inlormation can be digested
at many levels of detail and from different perspectives. Key
technical issues, including the design of the visualization
layout, efficient creation of integrated data views, indexing,
and proper update of the underlying dala sets, need to be
addressed to aid HTS data mining.

There is not yet a community standard that spans industry
and academia to analyze and describe HTS information.
However, the recent academic pursuit of screening has led to
proposed guidelines for reporting small molecule HTS data
[15]. From the HTS informatics perspective, this reporting
standard is one type of metadata, trying to satisfy data
interoperability after the completion of the screening proc-
ess, For many years, metadata, technically “information
about information”, have been recognized as a significant
component of the digital information environment for effec-
tive knowledge management. Indeed, it is has been long
speculated that the comprehensive creation and effective
management of metadata enable Google to seize search lead-
ership from Yahoo, To enable intelligent knowledge man-
agement solutions for lead discovery, the enterprise or ide-
ally the entire screening community needs to promole the
widespread adoption of metadata standards and the devel-
opment of specialized metadala vocabularies for standardiz-
ing multi-dimensional HTS data contents. The types of
metadata to be stored and decisions as to how they should be
structured must necessarily have a basis in the need lo ad-
dress currently unanswered and upcoming scientific ques-
tions., These meladata structures will serve as computing
guidance to describe underlying data, provide data integra-
tion contexts, and cluster and join related data types accord-
ing to common HTS attributes. The ultimate utility of HTS
metadata sels depends solely on the quality and
comptehensiveness of the HTS domain knowledge encapsu-
lated, Therefore, special altention and resources should be
allocated for this purpose, Rigorous evaluation and prototyp-
ing with the participation of multidisciplinary teams is
strongly recommended. Given the dynamics of HTS business
process, metadata should evolve accordingly. eXtensible
Markup Language (XML) is ideal for metadata implementa-
tion as XML schemas are designed to be constantly evolving
to address changes to business requirements and can be read-
ily exploited by an analysis application, database or report
generator, The congtruction of a well structured I1TS meta-
data set and subsequent application development is expected
lo trigger a move towards cffective business standardization,
encouraging scientists to globalize research methodology. It
is anticipated that innovative scientific computing capabili-
ties, including a “Google” like search engine, will help to
consolidate various lead discovery information under a
knowledge-driven user interface for HTS data mining, Addi-
tionally, integration and interoperability of current applica-
tions, either acquired or built in house, will drive effective
and efficient business integration,

OPPORTUNITIES AND FUTURE TRENDS

The ability of lead discovery to deliver high quality leads
depends critically on the effectiveness and efficiency of sci-
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entific computing. With the ever increasing complexity and
sophistication of HTS operations, this review will end with a
quick foray into some important future trends impacting
HTS informatics,

First and foremost is the emergence of community based
HTS data standards. Recently proposed guidelines as how to
report screening results {15] represent one public effort in
this direction. With the rapid expansion of the academic pur-
suit of chemical screening, it is fair to assume that this trend
will persist, and ultimately lead to fully open, heterogencous,
and standardized HTS solutions, One dimension, both aca-
demia and pharmaceutical companies will benefit from and
leverage, is interoperability.

Sccond is the emergence of trends to merge or consoli-
date various HTS related enterprise applications, including
ELNs (elecironic laboratory notebook), EDMs (enterprise
data management system) and LIMS (laboratory information
management systems), into one software framework,

Third is the emergence of a totally different data analysis
strategy for high throughput content screening. Such an im-
plementation would greatly influence HTS informatics in
general,

Fourth is the emergence of an open, centralized reposi-
tory, PubChem, for high throughput screening data. This
effect could be similar to that observed in the course of hu-
man genome projecl. Once a critical mass is reached, the
aggregaled heterogeneous data contents may not only revolu-
tionize academic research but also have a long term impact
on industrial drug discovery,

Finally, “the Increasing availability of data related to
genes, proteins and their modulation by small molecules has
provided a vast amount of biological information leading to
the emergence of system biology and the broad use of simu-
lation tools for data analysis [16]",

In summary, the aggressive pursuit of lead discovery,
both in academia and industry, continuously drives the evo-
lution of H'TS scientific compuling to deliver solutions efTec-
tively and efficiently support discovery decisions, In this
regard, informatics and lead discovery are gradually engag-
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ing each other as partners in the discovery of new medicines
or academic research tools.
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HTS = High throughput screening

HCS = [High content screening

ELN = Electronic laboratory note book

FDA = Food and Drug Administration
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