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Background: Type 2 diabetes mellitus (T2DM) is a multifaceted disorder affecting
epidemic proportion at global scope. Defective insulin secretion by pancreatic β-cells
and the inability of insulin-sensitive tissues to respond effectively to insulin are the
underlying biology of T2DM. However, circulating biomarkers indicative of early
diabetic onset at the asymptomatic stage have not been well described. We
hypothesized that global and targeted mass spectrometry (MS) based metabolomic
discovery can identify novel serological metabolic biomarkers specifically associated
with T2DM. We further hypothesized that these markers can have a unique pattern
associated with latent or early asymptomatic stage, promising an effective liquid biopsy
approach for population T2DM risk stratification and screening.

Methods: Four independent cohorts were assembled for the study. The T2DM cohort
included sera from 25 patients with T2DM and 25 healthy individuals for the biomarker
discovery and sera from 15 patients with T2DM and 15 healthy controls for the testing. The
Pre-T2DM cohort included sera from 76 with prediabetes and 62 healthy controls for the
model training and sera from 35 patients with prediabetes and 27 healthy controls for the
model testing. Both global and targeted (amino acid, acylcarnitine, and fatty acid)
approaches were used to deep phenotype the serological metabolome by high
performance liquid chromatography-high resolution mass spectrometry. Different
machine learning approaches (Random Forest, XGBoost, and ElasticNet) were applied
to model the unique T2DM/Pre-T2DM metabolic patterns and contrasted with their
effectiness to differentiate T2DM/Pre-T2DM from controls.

Results: The univariate analysis identified unique panel of metabolites (n = 22) significantly
associated with T2DM. Global metabolomics and subsequent structure determination led
to the identification of 8 T2DM biomarkers while targeted LCMS profiling discovered 14
T2DM biomarkers. Our panel can effectively differentiate T2DM (ROC AUC = 1.00) or Pre-
T2DM (ROC AUC = 0.84) from the controls in the respective testing cohort.
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Conclusion: Our serological metabolite panel can be utilized to identifiy asymptomatic
population at risk of T2DM, which may provide utility in identifying population at risk at an
early stage of diabetic development to allow for clinical intervention. This early detection
would guide ehanced levels of care and accelerate development of clinical strategies to
prevent T2DM.

Keywords: metabolomics, type 2 diabetes mellitus, biomarker, early detection, serum

1 INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting a
significant population worldwide. The prevalence of T2DM is
expected to expand into half a billion people by the year 2030
(Whiting et al., 2011). It is manifested as chronic
hyperglycemia caused by defective insulin secretion,
progressive development of insulin resistance, and an
inadequate compensatory insulin secretory response
(Stumvoll et al., 2005; Whiting et al., 2011). In the presence
of homeostatic imbalance of glucose, the overload of advanced
glycation end products induces enhanced oxidative stress and
systemic inflammation, which irreversibly causes functional
loss of pancreatic islet β cells (DeFronzo, 1988; Rossetti et al.,
1990; Robertson et al., 2003), peripheral insulin-targeting
tissues (Garvey et al., 1987; Rossetti et al., 1987), micro-
and macro-vascular cells (Brownlee, 2001; Brownlee, 2005),
leading to pathological complications such as cardiomyopathy,
nephropathy, retinopathy, neuropathy, and atherosclerosis.

The early detection of T2DM remains a significant challenge
in clinics today. As the onset of T2DM is asymptomatic for a large
portion of the high-risk population, there is usually a latent phase
before the confirmative diagnosis of T2DMduring which risk factors
for diabetic micro- and macro-vascular complications are markedly
elevated (Harris and Eastman, 2000; Colagiuri and Davies, 2009).
The diagnostic markers, such as fasting plasma glucose (FPG), oral
glucose tolerance (OGT), and glycated hemoglobin (HbA1c), are the
current gold standards for diagnosing T2DM in patients with
hyperglycemia but their ability to detect T2DM is limited by the
long asymptomatic phase of early T2DM (Lindström and
Tuomilehto, 2003; Carson et al., 2010). As T2DM is a chronic
condition that progresses over a long period and interventions with a
proven beneficial effect are available. Early detection of the disease
onset might allow immediate interventions to delay or prevent the
disease progression (Colagiuri and Davies, 2009; Pan et al., 1997;
Harris and Eastman, 2000; Knowler et al., 2002; investigators, 2006;
Tuomilehto et al., 2001). We previously defined and characterized
the critical transition state prior to the type 2 diabetes disease (Jin
et al., 2017). Our analysis of a US state patients’ pre-disease clinical
history identified a dynamic driver network (DDN) and an
associated critical transition state 6months prior to their first
confirmative T2DM state. A meta-analysis reported that 3-
months lifestyle interventions decreased the risk for diabetes from
the end of intervention up to 10 years later (He et al., 2012).
Therefore, the identification of pre-diabetic biomarkers in the
circulation of asymptomatic patients could be highly beneficial. as
a promising liquid biopsy utility for population health management.

Metabolomics is an emerging technology that allows the
comprehensive characterization of metabolites in biological
systems. It presents as a most recent addition to the omics
family and provides complementary information to genomics
and proteomics. Owing to the recent advances in analytical
instrumentation and bioinformatic approach, metabolomic
analysis based on liquid chromatography-high resolution mass
spectrometry (LC/HRMS) has given rise to the in-depth profiling
of diverse metabolites in a given biological system with superior
sensitivity, thus becoming a powerful platform to discover novel
biomarkers in close association with disease phenotypes for
clinical applications (Xia et al., 2013). As metabolites are
downstream end-products of genetic and proteomic
regulations, the characterization of metabolome allows the
effects of a plethora of pathological factors from vastly
different origins to be determined in a single measurement,
enabling the comprehensive understanding of molecular
mechanisms underlying the disease phenotypes (Xia et al., 2013).

In this study, we aim to characterize and identify unique
metabolic signatures using both targeted and global LC/HRMS
for the early T2DM detection.

2 MATERIALS AND METHODS

2.1 Study Population, Blood Collection, and
Clinical Characteristic
Four independent cohorts were assembled for the study. The
T2DM cohort included sera from 25 patients with T2DM and 25
healthy individuals for the biomarker discovery and sera from 15
patients with T2DM and 15 healthy controls for the testing. The
Pre-T2DM cohort included sera from 76 patients with
prediabetes and 62 healthy controls for the model training and
sera from 35 patients with prediabetes and 27 healthy controls for
the model testing. The study was approved by the Institutional
Review Board of Teda Hospital and conducted in accordance
with the Declaration of Helsinki. All experiments were performed
in compliance with the requirements of the Human Ethics
Procedures and Guidelines of the local government. Written
informed consent was obtained from all participants. Patients
with T2DM were diagnosed based on the American Diabetes
Association criteria using FPG (FPG less than 100 mg/dL as non-
diabetes, FPG between 100 and 125 mg/dL as prediabetes, and
FPG greater than 125 mg/dL as diabetes). The serum samples
were obtained by room temperature 30 min clotting of collected
blood followed by 5 min centrifuge at 3,000 r/min. All serum
samples were aliquoted and stored at −80°C prior to use. The
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clinical characteristics, including TC, TG, HDL-C, and LDL-C,
were determined by Cobas C 311 blood analyzer from Roche
(South San Francisco, CA, United States) by following the
protocols from the manufacturer.

2.2 Global Metabolomics
2.2.1 Metabolite Extraction
The metabolite extraction was conducted as previously described
with slight modifications (Nemkov et al., 2017). Briefly, once thawed
on ice, 10 µl of serum was extracted by 240 µl of prechilled
methanol/acetonitrile/water (5:3:2, v/v) containing 3 stable isotope
labeled amino acids as internal standards. Afterwards, the sample
was vortexed rigorously for 30min and centrifuged at 12,000 g for
10 min at 4°C. Thereafter, 200 µl of the supernatant was transferred
into auto-sampler vial with micro-insert for LC/MS analysis.

2.2.2 Global Metabolomic Profiling
The global metabolomic profiling was performed as previously
described with slight modifications (Nemkov et al., 2017). Briefly,
10 µl of serum extract was injected onto a Kinetex C18 column
(1.7 μm, 2.1 × 150mm; Phenomenex, Torrance, CA) via a Vanquish
UHPLC system (Thermo Fisher, San Jose, CA, United States). The
mobile phaseAwaswater with 0.1% formic acid, andmobile phase B
was acetonitrile with 0.1% formic acid. The separation was carried
out using isocratic elutionwith 5%B at a flow rate of 0.25 ml/min for
a total run time of 3min. The eluted metabolites were detected by a
Q Exactive Plus mass spectrometer (Thermo Fisher) operated in full
scan setup using both electrospray positive and negative modes,
operating separately as two independent runs. The conditions of
ionization source were set at 3.4 kV for spray voltage, 15 for sheath
gas, 5 for aux gas, 325°C for capillary temperature, 55 for S-lens, and
250°C for vaporizer temperature. TheMS spectra were acquired with
2 µscans using an AGC target of 1e6 and a resolution of 70,000
(FWHM at 200m/z) from 60 to 900m/z. The column oven was
maintained at 25°C throughout the analysis. Representative
chromatograms, with either positive or negative mode, were
shown in Supplementary Figure S1.

2.2.3 Data Pre-Processing
Following the analysis, the raw files were first converted into
mzXML files by msconvert software from ProteoWizard Tools
(http://proteowizard.sourceforge.net/tools.shtml). Subsequently,
metabolic features with unique mass/charge ratio and
retention time were extracted, aligned, quantified, grouped,
and annotated using the XCMS online package (Smith et al.,
2006). Afterwards, the obtained features underwent isotopic
removal, blank subtraction, and missing value filtering and the
QC-based signal drifting correction to normalize the undesired
variations. The QC-based signal drifting correction based on
locally estimated scatterplot smoothing was performed using
StatTarget package (Luan et al., 2018).

2.2.4 Metabolite Identification and Metabolic Network
and Pathway Analysis
Identification of significant metabolite was conducted by
matching the experimental retention time and accurate mass
of the metabolic features against an in-house library containing

600 + authentic standards. The metabolic networking analysis
and pathway enrichment analysis were implemented using the
built-in function available on MetaboAnalyst 4.0 (Chong et al.,
2019).

2.2.5 QA/QC
The raw signals of internal standards were used to evaluate the
extraction efficiency and instrumentation performance. The
LC-MS system was conditioned with 10 consecutive injections
of QC samples prior to the analysis of unknown samples. The
batchwise systematic and random variations were evaluated by
repeatedly injecting the QC samples that were spaced evenly.
Signal drifting along the batch was corrected using a QC-based
approach (Dunn et al., 2011). Between batches, the system was
maintained and calibrated to meet the requirements for
technical specifications.

2.2.6 Metabolic Features
The data acquisitions were implemented in both electrospray
ionization positive (ESI+) and negative (ESI−) modes to improve
the coverage of serum metabolome. Following the data
acquisition, the metabolic features were extracted, aligned,
quantified, grouped, and annotated to generate a sample-
feature intensity matrix with annotations for subsequent
qualification. In total, 1958 and 2,892 metabolic features were
detected in all serum samples from ESI+ and ESI−, respectively.
After isotope removal ([M+1]/[M+2] ions), blank subtracted
(signal-to-noise ≥5), and missing value filtered (≤ 20% missing
values in QC samples), 751 and 1,003 metabolic features were
qualified for ESI+ and ESI−, respectively. Upon normalized by
QC-based signal drifting correction based on locally estimated
scatterplot smoothing (LOESS), 323 and 295 metabolic features
were reproducibly detected in QC replicates (coefficient variation
≤30%) for ESI+ and ESI-, respectively, and thus selected for the
downstream data interpretation.

2.2.7 Structure Determination
Metabolite biomarker identification was first performed as a Tier
1 or 2 identification with chemical standards according to MS1
(Schymanski et al., 2014). With tandem mass spectrometry (MS/
MS, Thermo Q Exactive Plus) data of blood samples and manual
review confirmation, the generatedMS1/MS2 pairs were searched
in the public databases: HMDB (http://www.hmdb.ca/), MoNA
(http://mona.fiehnlab.ucdavis.edu/), MassBank (http://www.
massbank.jp/), METLIN (https://metlin.scripps.edu), and NIST
(https://www.nist.gov/). The metabolites of interest were
procured and subjected to a Tier 1 identification comparing
the retention time, MS1 and MS2 patterns with the biomarker
candidates, using the same LCMS/MS protocol with the blood
sample analysis.

2.3 Targeted Metabolomics
2.3.1 Metabolite Extraction
For MS/MS analysis, 10 µl of serum, 10 µl of internal standard
solution (AA: amino acids; AC: acylcarnitines; FA: fatty acids),
90 µl of extraction buffer, and 200 µl hexane were added for
extraction. The sample was vortexed vigorously for 1 min and
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centrifuged at 12,000 g for 5 min 80 µl of lower layer was
transferred into an auto-sampler vial for the analysis of amino
acids and acylcarnitines. 180 µl of upper layer was transferred
into another 1.5 ml centrifugal tube and was dried under nitrogen
stream. The residue was reconstituted with 100 µl of
derivatization buffer and incubated at 95°C for 15 min. After
derivatization, 100 µl of neutralization buffer was added into each
sample. The neutralized sample was vortexed vigorously for
1 min and centrifuged at 15,000 g for 3 min 100 µl of each
reconstituted sample was transferred into an auto-sampler vial
for the analysis of fatty acids.

2.3.2 Targeted Metabolomic Profiling
2.3.2.1 AA and AC
2 µl of serum extract was injected into a Vanquish UHPLC system
(Thermo Fisher, San Jose, CA, United States). The mobile phase
A was water with 0.5% formic acid and10 mM Ammonium
Formate, mobile phase B was methanol with 0.5% formic acid
and10 mM Ammonium Formate. The separation was carried out
using isocratic elution with 50% B at a flow rate of 0.10 ml/min.
The eluted metabolites were detected by an Altis mass
spectrometer (Thermo Fisher) operated in SRM setup using
electrospray positive mode. The conditions of ionization
source were set at 3.5 kV for spray voltage, 20 for sheath gas,
5 for aux gas, 300°C for ion transfer tube temperature, 200°C for
vaporizer temperature. The MS spectra were acquired using an
cycle time of 0.8 and Q1 resolution (FWHM) of 0.7, Q3 resolution
(FWHM) of 0.7, CID gas of 1.5, chromatographic peak width of
12. The column oven was maintained at 30°C throughout the
analysis.

2.3.2.2 FA
5 µL of serum extract was injected into a Vanquish UHPLC
system (Thermo Fisher, San Jose, CA, United States). The mobile
phase was methanol with 0.5% formic acid and 10 mM
Ammonium Formate. The separation was carried out using
isocratic elution with at a flow rate of 0.10 ml/min. The eluted
metabolites were detected by an Altis mass spectrometer
(Thermo Fisher) operated in SRM setup using APCI positive
mode. The conditions of ionization source were set at 6 µA for ion
discharge current, 20 for sheath gas, 5 for aux gas, 300°C for ion
transfer tube temperature, 300°C for vaporizer temperature. The
MS spectra were acquired using an cycle time of 1 and Q1
resolution (FWHM) of 0.7, Q3 resolution (FWHM) of 0.7,
CID gas of 1.5, chromatographic peak width of 12. The
column oven was maintained at 30°C throughout the analysis.

Multiple reaction monitoring (MRM) is the most common
targeted method for quantitation of analytes by LC/MS/MS. In
MRM, ions are selected to make it through the first quadrupole
and into the collision cell. In this study, the transition from
precursor/parent ion to product/daughter ions is referred to as an
ion transition (Supplementary Table S1).

2.3.3 Statistical Analysis
The normalized intensity of metabolic features from various
samples were log-transformed and auto scaled prior to the

statistical analysis. Multivariate and univariate statistical
analysis were performed using MetaboAnalyst 4.0 (https://
www.metaboanalyst.ca/) (Chong et al., 2019). A global false
discovery rate of 5% was applied to correct for the errors from
multiple hypothesis testing. All statistical analyses were
preformed using R packages (Tibshirani, 2006; Team, 2008).
We have applied power analysis (Tibshirani, 2006) to
determine the sample size for the testing of the T2DM and
Pre-T2DM models (Supplementary Figures 2A,B).

2.3.4 Machine Learning Approach Evaluation
The learning procedure was empirically compared against a
number of standard multivariate algorithms, including
Random Forest (Breiman, 2001), Elastic Net (Zou and Hastie,
2005) and XGboost (Chen and Guestrin, 2016). All algorithms
were evaluated using the same two-layer leave-one-subject-out
cross validation strategy.

3 RESULTS

3.1 Study Design
T2DM is a highly prevalent chronic metabolic disorder
characterized by hyperglycemia. We implemented both the
global and targeted mass spectrometry (MS)-based
metabolomics to advance T2DM research. The time associated
with traditional chromatographic methods for resolving
metabolites prior to mass analysis has limited the potential to
perform large-scale, highly powered metabolomics studies, and
clinical applications. Therefore, we applied a 3-min method
(Nemkov et al., 2017) for the rapid profiling of central
metabolic pathways through UHPLC/MS. Moreover, we
applied targeted metabolomics to profile amino acids,
acylcarnitines, and fatty acids as several studies suggest a
central role for oxidative stress in the pathogenesis of the
disease. The short-, medium-, and long-chain acylcarnitines
are a family of metabolites known to be dysregulated in
T2DM (Bene et al., 2018), linked to peripheral insulin
resistance. These acylcarnitines have an indispensable role in
lipid metabolism via their involvement in the less severe
disruptions in β-oxidation of long-chain fatty acids in T2DM.
The dysregulated fatty acid metabolism along with tissue lipid
accumulation is generally assumed to be associated in the
development of insulin resistance and T2DM (Sears and Perry,
2015). Increased levels of total plasma free fatty acid and
branched-chain amino acids (BCAAs) are associated with
T2DM pathogenesis (Sjögren et al., 2021).

Shown in Figure 1, four independent cohorts were assembled
for the study. The T2DM cohort included sera from 25 patients
with T2DM and 25 healthy individuals for the biomarker
discovery and sera from 15 patients with T2DM and 15
healthy controls for the testing. The Pre-T2DM cohort
included sera from 76 patients with prediabetes and 62
healthy controls for the model training and sera from 35
patients with prediabetes and 27 healthy controls for the
model testing.
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FIGURE 1 | Schematic study design.

TABLE 1 | Demographic table.

Characteristic Diabetic Cohort Pre-diabetic Cohort

Training Testing Training Testing

Non-
Diabetes
(n = 25)

Diabetes
(n = 25)

p
value

Non-
Diabetes
(n = 15)

Diabetes
(n = 15)

p
value

Non-
Diabetes
(n = 62)

Pre-
Diabetes
(n = 76)

p
value

Non-
Diabetes
(n = 27)

Pre-
Diabetes
(n = 35)

p
value

Age (year) 45.9 (1.1) 52.2 (4.7) 0.045 69.5 (3.2) 67.2 (5.9) 0.192 54.5 (5.2) 53.8 (6.2) 0.441 54.3 (4.2) 55.5 (6.8) 0.404
Gender
Male 10 (40.0%) 15 (60.0%) 5 (33.3%) 10 (66.7%) 29 (46.8) 53 (69.7) 7 (25.9) 21 (60)
Female 15 (60.0%) 10 (40.0%) 10 (66.7%) 5 (33.3%) 33 (53.2) 23 (30.3) 20 (74.1) 14 (40)
FPG (mM) 5.1 (1.8) 8.9 (3.0)*** 7.1 ×

10−10
5.1 (0.3) 9.6 (2.2)*** 1.7

× 10−6
5.2 (0.3) 6 (0.3)*** 3.7

×
10−5

5.2 (0.6) 6.1 (0.4)*** 2.9
×

10−6

TC (mM) 4.9 (0.8) 5.1 (1.2) 0.72 9.6 (2.2) 4.7 (1.1) 0.426 4.7 (0.9) 4.8 (1) 0.319 5.2 (0.9) 4.9 (1) 0.231

Creatinine (mM)
65.9 (13.7) 66.8 (19.9) 0.98 68.2 (11.0) 68 (14.1) 0.485 68 (14.1) 71.2 (13.5) 0.175 64.1 (10.8) 69.9 (13.1) 0.069

TG (mM) 1.3 (0.6) 2.3 (1.0)*** 4.5
×

10−4

1.4 (0.5) 1.4 (0.6) 8.4
× 10−5

1.4 (0.6) 1.8 (1.1)** 0.03 1.3 (0.5) 1.8 (0.9)** 0.009

HDL-C (mM) 1.4 (0.6) 1.1 (0.4) 0.049 1.4 (0.3) 1.3 (0.4) 0.0236 1.3 (0.3) 1.2 (0.4)*** 0.249 1.5 (0.4) 1.1 (0.3)*** 2.8
×

10−4

LDL-C (mM) 3.2 (0.8) 3.1 (1.1) 0.791 3.0 (0.7) 3.0 (1.0) 0.86 3 (0.8) 3 (1) 0.93 3.4 (0.9) 3.2 (1) 0.299

All values are presented as mean (SD) except for gender where percentage is applied. The p values were determined by Mann-Whitney U test and classified into several categories based
on following criteria by comparing against the control group: *: p < 0.05; **: p < 0.01; ***: p < 0.001. FPG, fast plasma glucose; TC, total cholesterol; HDL-C, high density lipoprotein
cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides.
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3.2 Sample Demographics and Clinical
Characteristics
The sample demographics and clinical characteristics are
summarized in Table 1. T2DM associated clinical
characteristics were analyzed: fasting plasma glucose (FPG),
high-density lipoprotein cholesterol, triglyceride, and
creatinine were found to be statistically significant (p < 0.05)
between case and control groups, whereas the other clinical
characteristics, including low density lipoprotein (LDL)
cholesterol, total cholesterol, and serum creatinine, were
insignificant (p > 0.05) between case and control groups
among all studied cohorts.

3.3 Identification of Metabolic Signature for
T2DM
The data interpretation was performed in a stepwise manner
using a suite of bioinformatic approaches. The Mann-Whitney U
test with a 5% false discovery rate was used to determine the
statistical significance of individual metabolic features by
comparing the case to control groups from the T2DM training
cohort. From the global metabolomic analysis, 12 validated
features were putatively identified, with MS1 Tier 1
identification, by matching the retention times and accurate
masses against an in-house library containing 600+ authentic
standards. 8/12 were structurally determined (Figure 2, with Tier
2 identification) were determined: hexose [M + Na]+, hexose [M-
H]−, 1,5-anhydroglucitol, feruloylquinic acid, galactitol, 2-
ketobutyric acid, 3-methylglutaconic acid, and sucrose. From
the targeted metabolomic analysis, 14 were identified:
pyroglutamic acid, ornithine, hexose, valine, leucine/isoleucine,
tyrosine, phenylalanine, tryptophan, C16-carnitine, C14-
carnitine, C5DC-carnitine/C6OH-carnitine, C5OH-carnitine,

tritriacontanoic acid (33:0) butyl ester, and dotriacontanoic
acid (32:0) butyl ester. These 22 metabolites constitute the
T2DM biomarker panel for the following analyses. The
univariate statistics of the T2DM panel biomarkers are
illustrated in Figure 3.

With unsupervised clustering, the heatmap revealed a distinct
T2DM pattern of these 22 compound biomarkers (Figure 4),
separating T2DM subjects from the non-diabetic controls in both
training and testing cohorts.

3.4 Exploration of the T2DM Metabolic
Panel to Assess Prediabetic Patients in the
General Population
We set to apply the T2DM panel to assess those who are at high
risk of developing T2DM. Not as a pronounced pattern of the
T2DM panel seen in the T2DM cohort, the pattern of these 22
compound biomarkers (Figure 4) persists in the Pre-T2DM
cohort, separating prediabetic subjects from the non-diabetic
controls in both training and testing cohorts. We applied
different machine learning algorithms, including Random
Forest, XGBoost and Elastic Net, to these datasets for the
T2DM assessment. For the T2DM dataset, we developed the
model with the T2DM training set which achieved similar
superb performance for the testing set: Random Forest, ROC
AUC 0.98; XGBoost, ROC AUC 0.99; Elastic Net, ROC AUC
1.000 (Figure 5A). For the Pre-T2DM cohort, we developed
the model with the Pre-T2DM training set and found XGBoost
performed the best for the Pre-T2DM testing set: Random
Forest, ROC AUC 0.78; XGBoost, ROC AUC 0.84; Elastic Net,
ROC AUC 0.78 (Figure 5B). Therefore, XGBoost Pre-T2DM
model would be the model for the analysis of the general
population at risk for the T2DM at early prediabetic stage.

FIGURE 2 | Structural identification of the biomarker compounds discovered from global metabolomics analysis: Hexose, 2-ketobutyric acid, 3-methylglutaconic
acid, 1,5-anhydroglucitol, Galactitol, Sucrose, and Feruloylquinic acid. Measured MS/MS spectral fragmentation profiles (top, in black) matching procured chemical
standards (bottom, in red) profiled with the same LCMS protocol.
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Cross-sectional retrospective cohort analysis (Le et al., 2019) of
the 2003–2014 National Health and Nutrition Examination Survey
(NHANES) reported the prevalence of prediabetes (34.8%). Shown
in Figure 6, the prevalence adjusted positive predictive values (PPV),

a measure of clinical risk, is shown as a function of XGBoost Pre-
T2DM model predictor score. Stratification of subjects with
increasing predictor scores occurs as positive predictive values
(PPV) from a background value (population rate of 34.8%) to

FIGURE 3 | Volcano plot analysis of the biomarker compounds revealed in our discovery analysis with the T2DM training cohort. Filled circles representing
compounds discovered from the targeted metabolomics analysis. (A): Glucose ([M + Na]+), (B): 2-Ketobutyric acid, (C): 3-Methylglutaconic acid, (D): 1,5-
anhydroglucitol, (E): Glucose ([M-H]-), (F): Galactitol, (G): Sucrose, (H): Feruloylquinic acid. Open circles representing compounds discovered from the global
metabolomics analysis, 1: Pyroglutamic acid, 2: Ornithine, 3: Hexose, 4: Valine, 5: Leucine/Isoleucine, 6: Tyrosine, 7: Phenylalanine, 8: Tryptophan, 9: C16-
Carnitine, 10: C14-Carnitine, 11: C5DC-Carnitine/C6OH-Carnitine, 12: C5OH-Carnitine, 13: Tritriacontanoic Acid (33:0) Butyl Ester, and 14: Dotriacontanoic Acid (32:0)
Butyl Ester.

FIGURE 4 | Unsupervised clustering (heatmap analysis) of 22 classifying metabolites (8 from global metabolomics and 14 from targeted metabolomics) reveals
distinct metablic patterns separating diabetic, pre-diabetic samples from healthy controls. Abbreviations are as follows: 1,5-AG, 1,5-anhydroglucitol; FQA, Feruloylquinic
acid; Glu, Glucose; 3-MGA, 3-methylglutaconic acid; 2-KBA, 2-ketobutyric acid and Suc, Sucrose.
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relative risks of 1.5X (52.2%) and 2X (69.6%) (dashed lines) and
higher. The distribution of Pre-T2DM predictor score values for
subjects color-coded (green, controls; red, Pre-T2DM) are shown in
box plots in Figure 6. Using the risk curve in Figure 6, Pre-T2DM
subjects were identified as high or low risk according to a predictor
score cutoff corresponding to 2X relative risk (PPV of 69.6%,
predictor score = 0.505).

4 DISCUSSION

Early detection of T2DM remains a challenge in current
clinical practice. Diagnostic markers including FPG, OGT,

and Hb1Ac are gold standards in identifying impaired
glucose disposition and poor glycose management in
patients with T2DM. However, a long latent phase of
T2DM onset occurs asymptomatically before hyperglycemic
symptoms are manifested (Lindström and Tuomilehto, 2003;
Carson et al., 2010). The current screening test utilizes several
risk factors such as metabolic syndrome and family history for
early assessment of T2DM, which are short in both sensitivity
and specificity. Moreover, T2DM is a chronic condition that
progresses over a long time, and early detection of T2DM
might allow immediate interventions such as dietary control,
weight loss, and glucose-lowering medications for effective
management of the disease (Pan et al., 1997; Knowler et al.,
2002; investigators, 2006; Tuomilehto et al., 2001). Aiming for
the early detection of general population at high risk of T2DM,
we employed an omics-based approach integrating global
metabolomic profiling and bioinformatic analysis to identify
potential pre-diabetic biomarkers in blood. The efforts from
the T2DM metabolic panel discovery, testing, and application
to prediabetic cohorts to case find subjects at high risk for
T2DM led to the identification of 22 metabolites in circulation
with a unique metabolic pattern associated with T2DM risk.
The multivariate analysis based on those metabolites indicated
the presence of significantly dysregulated metabolism in
patients with early progressing T2DM, which was
differentiative between pre-diabetic and non-diabetic
subjects. Longitudinal measurement of the metabolic panel
thus might offer an opportunity for assessing diabetic onset
before the development of relevant clinical signs and
symptoms.

Our study also identified 22 metabolites that were significantly
altered in T2DM, andmodels were developed in risk stratification
to case find the general population at risk of the onset of
prediabetes. Hexose represents monosaccharides with a six-
carbon scaffold, and glucose is known to constitute over 95%
of hexose content in humans. Sucrose is a nonreducing
disaccharide composed of glucose and fructose linked via their

FIGURE 5 | Development of T2DM and Pre-T2DM models with different machine learning approaches.

FIGURE 6 | Prevalence-corrected positive predictive values (PPV) was
plotted as a function of Pre-T2DM predictor score for the Pre-T2DM cohort
samples. Horizontal dashed lines identify the average population risk of
34.8%, and relative risks of 1.5X (52.2%) and 2X (69.6%). Vertical
dashed lines identify corresponding predictor scores. The confidence interval
about the PPV curve (gray shaded area) was estimated using all Pre-T2DM
subjects. Confidence intervals about the PPV were calculated with the normal
approximation of the error for binomial proportions. Box plots at the foot of the
figure correspond to the distributions of predictor scores for prediabetic and
control subjects. The PPV curve and the box plots share the same predictor
score axis.
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anomeric carbons. Increased dietary intake of sucrose is
considered a risk factor for diabetic pathogenesis, and a recent
study has discovered that the dietary replacement of sucrose by
fructose can significantly improve glucose disposition and insulin
sensitivity (Evans et al., 2017). Our study revealed significantly
increased circulating hexose and sucrose induced by defective
insulin secretion and impaired insulin sensitivity in T2DM,
consistent with disease pathophysiology (Gonzalez-Franquesa
et al., 2016; Klein and Shearer, 2016; Arneth et al., 2019; Sun
et al., 2019). 2–KBA is produced by amino acid catabolism
(threonine and methionine) and glutathione anabolism
(cysteine formation pathway) and is metabolized to propionyl-
CoA and carbon dioxide (Gall et al., 2010; Syed Ikmal et al., 2013).
During the formation of 2–KBA, 2-hydroxybutyrate (2–HBA) is
formed as a by-product, and mounting evidence has
demonstrated that circulating 2-HBA is inversely correlated
with insulin sensitivity and elevated 2-HBA is an early marker
for both insulin resistance and impaired glucose regulation
independent of sex, age, and BMI (Gall et al., 2010; Syed
Ikmal et al., 2013). 2–KBA can also be produced in the
conversion of cystathionine to cysteine. In the presence of
enhanced oxidative stress in T2DM, a metabolic shift occurs by
stimulating homocysteine production from transmethylation
of methionine to transsulfuration of homocysteine to produce
cystathionine and cysteine for meeting the increased demand
of glutathione, the primary cytoplasmic antioxidant (Ratnam
et al., 2002; Schalinske, 2003). Cystathionine is a metabolic
intermediate formed by the condensation of serine and
homocysteine via the catalysis of cystathionine β-synthase
(CBS) for homocysteine transsulfuration. Markedly elevated
transcriptional expression and enzymatic activity of CBS were
observed in a streptozotocin-induced diabetic rat model, and
the administration of regulatory hormones such as insulin was
able to revert the elevation of CBS to result in the attenuation
of diabetic phenotype (Ratnam et al., 2002). Our study
discovered the upregulation of 2-KBA and cystathionine in
T2DM, further confirming their mechanistic roles in glycemic
regulation. 1,5-AG is a metabolically inert polyol that
competes with glucose for reabsorption in the kidneys and
has been validated as a marker of short-term glycemic control.
Its level is inversely correlated with glucose level in blood
circulation, and reduced plasma 1,5-AG is a sensitive marker
for increased urinary excretion of glucose (Dungan, 2008; Kim
and Park, 2013). Several studies have proposed 1,5-AG as a
short-term retrospective marker for monitoring glucose
excursions (Dungan, 2008; Kim and Park, 2013). Our
results revealed the downregulation of 1,5-AG in T2DM,
again validating its utility as a biomarker for monitoring
short-term glycemic management. FQA is a subclass of
chlorogenic acids (CGAs) that are esters formed between
caffeic and quinic acids. CGA represents an abundant group
of plant polyphenols present in the human diet. In-vitro and
in-vivo studies have indicated their potent anti-oxidative and
anti-inflammation activities by prolonging the lifetime of the
phenoxyl radical and upregulating the pro-inflammatory
cytokines at transcriptional level (Liang and Kitts, 2016).
Results from epidemiological studies have suggested that the

consumption of beverages containing CGA is associated with
reduced risks of developing chronic diseases such as T2DM
(Tajik et al., 2017). Our results illustrated a significant
upregulation of FQA in T2DM, suggesting a surging
demand for antioxidants to counteract increased oxidative
stress in diabetes. Our targeted analysis revealed branched
chain amino acid (BCAA) valine and leucine/isoleucine, and
aromatic amino acid (AAA) phenylalanine, tyrosine and
tryptophan as biomarkers for T2DM. Elevated plasma
concentrations of BCAA and AAA circulate up to 10 years
prior to a diagnosis of T2DM, hence interest in their role as
biomarkers for insulin resistance and T2DM (Cheng et al.,
2012; Saleem et al., 2019). Our results of C16/C14/C5DC/
C6OH/C5OH carnitine alterations in serum concentrations in
both T2DM and prediabetic states are in line with previous
findings about the role of mitochondrial function in the
complex pathogenesis of type 2 diabetes. The mitochondrial
function seems to play a significant role in the complex
pathogenesis of insulin resistance (Kelley et al., 2002; Koves
et al., 2008; Mihalik et al., 2010). Recent studies suggest that
concentrations of various acylcarnitines are associated with
insulin resistance and T2D (Adams et al., 2009; Huffman et al.,
2009; Tai et al., 2010; Ha et al., 2012) and incomplete fatty acid
oxidation results in elevated acylcarnitine concentrations
(Koves et al., 2005). In addition, our study also identified
several novel markers, including 3-MGA, galactitol,
ornithine, pyroglutamic acid, and dotria/tritriacontanoic
acid (32:0/33:0) butyl esters with unknown implications in
T2DM and further investigations on their pathological
implications might uncover novel molecular mechanisms to
provide more comprehensive understanding of T2DM
pathophysiology and guide the development of new
therapeutic with better efficacy for treating T2DM.

Despite the strengths of our study results, these findings
need to be evaluated in the context of the study limitations. A
prospective longitudinal high resolution sampling cohort
assembly with the emerging T2DM as a clinical outcome
can validate the clinical utility of our T2DM metabolic
panel to allow the early detection of the disease onset for
proactive intervention.

In conclusion, we presented a metabolomics-based discovery
study with T2DM and prediabetic subjects. Using sera from four
independent cohorts, a panel of metabolic biomarker candidates
was discovered from T2DM cohort and tested with Pre-T2DM
cohort to risk stratify the general population to case find the high
risk subjects of emerging T2DM. Application of this predictor
should enable early and sensitive detection of generation
population at risk of T2DM. This early detection may improve
clinical outcomes through increased clinical surveillance as well
as accelerate the development of clinical interventions for T2DM
prevention.
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