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ABSTRACT

To get a better understanding of the ongoing in situ environmental changes preceding the brain tumori-
genesis, we assessed cerebrospinal fluid (CSF) proteome profile changes in a glioma rat model in which
brain tumor invariably developed after a single in utero exposure to the neurocarcinogen ethylni-
trosourea (ENU). Computationally, the CSF proteome profile dynamics during the tumorigenesis can be
modeled as non-smooth or even abrupt state changes. Such brain tumor environment transition analysis,
correlating the CSF composition changes with the development of early cellular hyperplasia, can reveal
the pathogenesis process at network level during a time before the image detection of the tumors. In
our controlled rat model study, matched ENU- and saline-exposed rats’ CSF proteomics changes were
quantified at approximately 30, 60, 90, 120, 150 days of age (P30, P60, P90, P120, P150). We applied
our transition-based network entropy (TNE) method to compute the CSF proteome changes in the ENU
rat model and test the hypothesis of the critical transition state prior to impending hyperplasia. Our anal-
ysis identified a dynamic driver network (DDN) of CSF proteins related with the emerging tumorigenesis
progressing from the non-hyperplasia state. The DDN associated leading network CSF proteins can allow
the early detection of such dynamics before the catastrophic shift to the clear clinical landmarks in glio-
mas. Future characterization of the critical transition state (P60) during the brain tumor progression may
reveal the underlying pathophysiology to device novel therapeutics preventing tumor formation. More
detailed method and information are accessible through our website at http://translationalmedicine.
stanford.edu.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

forming inside the brain, which significantly limits the study of
its origin due to the limited access to the tissue.

The influence of the local environment in cancer development,
clearly established in several systemic neoplasms including colon,
breast and prostate cancers [1-3], remains unexplored in gliomas.
An ideal approach to study the early cancer development preced-
ing the clinical landmark of brain tumor is to analyze abnormalities
in distinct time-series prior to the detection of the apparent
malignancy. However, brain tumor develops with abnormal cells
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Approximately 10-30% of all cerebrospinal fluid (CSF) is
extrachoroidal in origin and is represented by bulk flow of the
interstitial fluid from brain parenchyma into the ventricles and
subarachnoid space [4-6]. With this readily accessible sample
source, we previously profiled CSF proteome to survey brain
environment alterations prior to impending hyperplasia by
surface-enhanced laser desorption/ionization TOF mass spectrom-
etry (SELDI-TOF-MS). SELDI-TOF-MS has been used successfully to
identify biomarkers in blood from various malignancies using
comparative proteomic strategies [6-8].

While there have been several clinical studies that attempted to
identify biomarkers of brain tumor using comparative proteomic
techniques [9-11], failure in controlling variables such as age,
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space occupying volume and tissue permeability prevented these
studies from recognizing whether a changed protein expression
pattern accurately represented an effect of the neoplastic process.
To control these variables, we assessed changes in CSF proteome at
days P30, P60, P90, P120 and P150 in a rat model, of which gliomas
invariably developed after a single in utero exposure to the neuro-
carcinogen ethylnitrosourea (ENU).

Given that the rat gliomas are not generally detectable patho-
logically until approximately 90 days of age (P90), we hypothe-
sized that brain tumor progression can be modeled into three
states: (1) a pre-hyperplasia state with high resilience and robust-
ness to perturbations; (2) a critical state defined as the prelude to
catastrophic shift into the hyperplasia state, occurring before the
imminent phase transition point is reached, and with low resili-
ence and robustness due to its dynamical structure; (3) a hyper-
plasia state representing a seriously deteriorated stage possibly
with high resilience and robustness, when the system usually finds
it difficult to recover or return to the normal state even after inter-
vention. This hypothesis was supported by the observations that
there was usually sudden health catastrophic shift during the grad-
ual progression of many chronic diseases [12-17]. The drastic or a
qualitative transition in the focal system or network, from a nor-
mal state to a disease state, corresponds to a so-called bifurcation
point in dynamical systems theory [18,19]. Various critical transi-
tion phenomena have been reported in climate and ecosystems
[20]. When the system is near the critical point, there exists a dom-
inant group which we defined as dynamic driver network (DDN) of
features satisfying the following three conditions: (1) the correla-
tion between any pair of members in DDN becomes very strong;
(2) the correlation between one member of DDN and any other
molecule of non-DDN becomes very weak; (3) any member of
DDN becomes highly fluctuating during transition [21-23]. We
previously employed transition-based network entropy (TNE) to
effectively identify the DDN as well as the transition state [21].
The TNE was actually an improved Shannon entropy [24]| that
was conditional on the previous state of a local dynamical network
in a Markov process, which was also the entropy rate of the state
change in a feature space network, where each node represented
a feature and each edge represented a regulatory relation between
two features, with the assumption that a Markov process governed
the dynamics of each node. Given a high dimensional feature net-
work, we found that the TNE was drastically increasing when the
system approached the transition state, whereas there were no sig-
nificant TNE fluctuations at either normal or disease states.

In this study, we set to assess the CSF proteome profile dynam-
ics and test our hypothesis of non-smooth or even abrupt state
changes during the glioma tumorigenesis. Such brain tumor envi-
ronment transition analysis, correlating the CSF composition
changes with the development of early cellular hyperplasia, can
reveal the pathogenesis process at network level during a time
before the imaging detection of the tumors.

2. Materials and methods

In this section, we describe the experimental procedure and the
theoretical basis, i.e., the TNE score, and the mathematical basis of
DDN method (Fig. 1); some details are given in Supplementary
information.

2.1. Data acquirement and ethics

Case (ENU) and control rat handling was in accordance with
guidelines for animal safety and welfare. Rat CSF proteomics
experiment was approved by the Stanford IUCAC (Protocol
#11936).

2.2. ENU administration, rat CSF collection, histological analysis, and
CSF proteomics

ENU rat glioma model, ENU administration, rat CSF collection
and subsequent histological analysis were as previously described
[6]. CSF proteomics profiling and subsequent data analysis were as
previously described (Table 1) [6,25,26].

2.3. Markov process of the network evolution

The dynamics for the progression of complex diseases are very
complicated either before or after sudden deterioration, and
therefore the state equations are generally constructed in a
high-dimensional space with a large number of variables and
parameters. However, when the system is driven by a group of
parameters to approach to a critical point, theoretically the system
can be expressed in a very simple form, generally by one- or
two-variable dynamical equations in an abstract phase space
around a codimension-one bifurcation point. This is generally
guaranteed by both the bifurcation theory and center manifold
theory [23]. Based on this special feature during this special phase,
we derived the dynamical characteristics of the network at this
stage to detect the critical transition.

Specifically, we first defined the network state (or original vari-
ables) and transition state of a dynamical network in a Markov pro-
cess. For an n-node network, let

Z(t) = @i (1), ... za(1)

represent the network state at the sampling point t, where z(t)
denotes the expression value of node (i.e., feature i). Then,
xi(t) € {0, 1} is defined to measure whether or not node i has a large
change at ¢, that is, if |z;(t) — zi(t — 1)| is sufficiently large (> d;),
xi(t) = 1, otherwise x;(t) = 0, where d; is a positive constant thresh-
old or the threshold. Thus, X(t) = (x;(t),...,Xa(t)) represents the
transition state for the network at t.

Next, a local network structure centered on each node is
defined, which is the basis to construct the conditional network
entropy. Assume that node i has m linked first-order neighbor
nodes iy, iy, ...,in, which composes a local network centered on
node i with local transition state X'(t) = (xi(£), X, (¢), ..., X, (£)) at
t. Clearly, from the current state X'(t) at time t, there are totally
2™ possible state transitions (or possible transition states), which
t + 1 (see Fig. 2A). To simplify notation, X(t) is denoted as X(t), and
transition state is denoted as state.

From the network structure, the Markov matrix P = (p,,) can
be derived, where p, ,(t) describes the transition rate from state
u to state v with

Puy(t) =Pr(X(t + 1) = A, |X(t) = Ay), (M

where u, v € {1,2,...,2™"} and ¥ p, ,(t) = 1. Thus, we have the
following the stochastic Markov process for X(t)

{X(t+1)} o, = {X(O.X(t+1),... . X(t+1),...} )
with X(t +i) = A, u e {1,2,..., 2™
2.4. Theoretical derivation near the critical point

Consider the following discrete-time dynamical system repre-
senting dynamical evolution of a network

Z(t+1) =f(Z(t);P), 3)

where Z(t) = (z1(t),...,za(t)) is an n-dimensional state vector or
variable at time instant k representing feature values,
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Fig. 1. Study outline. (A) Based on SELDI/TOF proteomics profiling, we studied th

~ =

e tumor development of rats with ENU treatment. The time-course data ranged over 5

sampling time points, i.e., 30, 60, 90, 120 and 150 days. The occurrence of hyperplastic micro tumors was at P90 as previously observed. (B) With the dynamic driver network

(DDN) analysis, we localized the CSF proteome feature network and calculated th

e network entropy, through which the whole feature network was classified into three

layers: inside, boundary and outside. (C) Based on the DDN locating in the inside layer, we identified the transition state and detected the early-warning signal of the

imminent critical deterioration into hyperplasia state.

Table 1
Cohorts of ENU rats and SELDI spectra revealed CSF proteome.

Times Sample description
Case (samples) Control (samples) Features

P30 13 11 247

P60 16 16

P90 22 23

P120 6 5

P150 7 5

P = (py,...,p) is a parameter vector or driving factors representing

slowly changing factors. f: R" x R® — R" is a nonlinear function.
Furthermore, the following conditions are assumed to be held for
Eq. (3).
e Z is a fixed point of system such that Z = f(Z; P).
e There is a value P, such that one or a pair of the eigenvalues of
the Jacobian matrix 2|, , equals to 1 in modulus.
e When P#P,, the eigenvalues of system (3) are not always 1 in
modulus.

The above three conditions with other transversal conditions
imply that the system undergoes a phase change at Z or a
codimension-one bifurcation when P reaches the threshold P..
The bifurcation is generic, i.e., almost all of bifurcations for a gen-
eral system satisfy these conditions.

For system (3) near Z, before P reaches P., the system is
supposed to stay at a stable fixed point Z and therefore all
the eigenvalues are within (0,1) in modulus. The parameter
value P, at which the state shift of the system occurs is
called a bifurcation parameter value, or a critical transition
value.

Now we consider the linearized approximate equations of Eq.

(3). Specifically, by introducing new variables
Y(t) = (y1(t),...,yo(t)) and a transformation matrix S, i.e,
Y(t) =S '(Z(t) — Z), we have

Y(t+1) = AP)Y(t) + L(0),

A
State X (£) = A ~a
Agmi
B State X (t+ 1) =Ajo0r Aa,...,0orAgm+1
3.5
1
g |
o i i
9 2.5 i |
- i !
N
1.5 : ' } } }
30 60 90 120 150
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Fig. 2. (A) Local network centered on node i with m linked neighbor nodes iy,i,,~

..im. For any state at time t, there are totally 2™"" possible state transitions (or
possible transition states) to the state in the next time t + 1. Such state transition
process is modeled as a Markov process. (B) Based on the state transition process,
we derived the transition-based network entropy (TNE). For the data of brain tumor
development, the composite TNE index I increase sharply around 60 days, indicat-
ing the critical transition and reflecting the emerging hyperplasia after P60.

where ((t) = ({;(t),...,{,(t)) are small Gaussian noise with zero
means. {; has a small standard deviation o; for all k.

Without loss of generality, the diagonalized matrix
A= (1,...,2n) is assumed to has each /; between 0 and 1.
Among the eigenvalues of A, the largest one (in modulus), say 44,
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first approaches to 1 in modulus when parameter transition P — P,
occurs. The eigenvalue /; characterizes the system’s rate of change
around the fixed point and is called the dominant eigenvalue. The
early state corresponds to the period with |1;] < 1, whereas the
transition stage corresponds to the period with i; — 1. Without
the loss of generality, the first variable y, in Y is assumed to be
associated with 1;. We have proven that there exists a dominant
group (or module) or a dynamical driver network (DDN) near a
fixed point, which satisfies some generic conditions simultane-
ously (including high fluctuation, strong correlation within DDN,
and the weak correlation between DDN-members and other nodes)
when the system approaches a critical transition point [23].

Unlike the analysis on the original variables Z in [23], here we
focused on the variation equation of Eq. (3) with variation variable
set AZ.

Noting

Zi =Sy + -+ Sinkn + Zi, (4)
let the variation variable

AZ=Z(t)-Z(t-1),

then from Eq. (4) we have

Az; = SAY; + - - + SinAY,

where

AY =Y(t)-Y(t-1).

We call Az;(t) and Ay;,(t) as the variation variables for z(t) and y;(t),
respectively.
Obviously, it holds that

AY(t + 1) = AY(t) + &(8),

where ¢(t) = {(t) — {(t — 1) is Gaussian noise with zero mean and

covariance kj = Cov(;,¢;). It is clear that the standard deviation

of &(t) is \/20;, where g; is the standard deviation of { for all t.

Obviously, variable Ay, corresponds to the dominant eigenvalue /.
For any integer T > 0, by iteration we have

AY(t+T) = ATAY(£) + AT TE(t) + AT 2t +1) + - -
+AEE+T-2)+EE+T-1)

Clearly, the summation of the coefficients for the covariance
matrices for T Gaussian noise, is

I-ADHT-A)"

where [ is the n-dimensional identity matrix.
Note that when the system is in an early state, 4; < 1. Hence as
T — +oo it holds

AY(t+T) = &(t) (5)

where ¢g(t) = (&(t),...,&n(t)) are small Gaussian noise with zero
means. Based on the Law of Large Numbers, the deviation of is
bounded when /; < 1.

Back to the original variable Z, it can be derived that

Azi(t +T) =spAy; (t+T) + - + SinAY,(t +T) (6)

Therefore, when the system is in an early state, or equivalently
|4i] <1, any variation variable Az;(t + T) is statistically independent
of its initial variable Az;(t) for a sufficiently long T, because the bio-
chemical reactions occur in a very short time interval (e.g., less
than micro-seconds). In other words, any two samples can be
considered to have a long T due to a large number of biochemical
reactions during the intervals of their observations, and therefore,
variation variables for any two samples are statistically indepen-
dent of each other when the system is in the early state.

In the following section, the case near the critical transition is
discussed when the dominant eigenvalue 4; — 1 (for 4; — -1,
the derivation is similar and thus is omitted).

Notice that the variation variable y, is related to the dominant
eigenvalue /;. So

Vit +T) =y (t+T =1+ (t+T—-1)
holds for any integer T. Then we have
Ayt +T)+Ay;(t+T—-1)+-- -+ Ay (t+ 1)

=A@yt +T=1)+ -+ Ay () + (G(E+T = 1)) = Gt - 1).

Therefore,
Ay (t+T) = (b = DAY (E+T = 1) + -+ (4 = DAy (E+ 1)
+ a8y (O + (GE+T-1) - G(t-1))
Hence when 4; — 1 we have
Ay (t+T) = Ay, () + (G(E+T = 1) = §(t - 1))

which means that Ay, (t + T) strongly depends on Ay, (t) for small
noise level. In this way, the dominant variable Ay (t) also strongly
depends on its previous state when P is near P.. It is obviously that
the same result holds when 2; — —1.

On the other hand, because || < ||, i=2,3,...,n, other vari-
ables Ay;(t + T) satisfy Eq. (5), that is,

Ay(t+T) = &(t), i=2,3,...,n.

Notice that the variable Ay, (¢) is related to the dominant eigen-
value ;.

There is a special group of variables z;, whose variables Az; are
related to Ay, i.e., the Az; in Eq. (6) with s;;#0, called a dominant
group. Such variables z; are called the dominant group members, or
dynamical driver network (DDN) members [22].

For any two DDN members z; and z; with s;;#0 and s;;#0 in Eq.
(6), when |2;| — 1, we have

SA
AZi(t +T) =AY (E+T) + - + SipAY, (E+T) = ﬁAzi(t) +pi(t)
1

where

pj(t) =Sji (Cl(t+ T-1)-¢@-1) +z’—:(sj2 —Si)&x(t)

su)in(t)) |

represents Gaussian noise, which is assumed to be small. It is clear
that when |4| — 1, for any two DDN members, the variable
Azj(t +T) is correlated to Az(t). It also holds for i =}, i.e., for any
DDN member, the variable Azj(t +T) is correlated to its previous
state Azj(t). On the other hand, as indicated by Eq. (3), for any
non-DDN member z,, Az(t+T) is statistically independent of
Azk(t)'

Si1
+oe (S —
Si1

2.5. 2.5.Dynamical increase of network entropy

For a local structure centered on node i with its m linked
first-order neighbor nodes iy, i,,...,i,, we already know that its
state transition process is a stochastic Markov process given as in
(2). Within a period or phase, assume that there is no change on
the transition matrix, i.e., the transition probabilities p, ,(t) in (1)
between any two possible states A, and A, are invariant. Thus,
the process {X(t)},c, , IS @ stationary stochastic Markov process
during a specific period, e.g., the early stage or the transition stage.

Hence, there is a stationary distribution 7= (7q,...,Tymu)
satisfying > ,m,p, , = m,. Then, we can define a transition-based
network entropy (TNE) as
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Hi(t) = H()() = 7vapu,v Ingu,v (7)

where the subscript index i indicates the center node i of this local
network, and y represents the state-transition process X(t),X(t + 1),
...,X(t+T),... of the local network.

We combine the TNEs for all nodes and define the average net-
work entropy for the whole network with n nodes as the average
TNE as follows:

H(O = Hi®) )
i=1

Suppose that there are control samples and case samples, then

we define the comparative entropy as:

Hcontrol ( t)
I(t) Hcase(t) (9)
where Heoneroi (t) is the TNE based on control samples in the form of
Eq. (8), and Hcas(t) is the TNE based on case samples in the form of
Eq. (8).

Note that we defined the dominant group, or the DDN, as a
group of nodes that collectively makes the first move toward the
disease state, thereby indicating a sudden deterioration. Then,
the nodes in the network can be categorized into three groups
according to the local structure of the DDN or the leading network:

e Type 1: DDN feature is a DDN node, i.e., if node i belongs to DDN,
then i is a Type 1 node.

e Type 2: A 1st-downstream feature is a node that is linked with at
least one DDN node, i.e., if node i is a non-DDN node and some
of its linked neighbors are DDN nodes, then i is a Type 2 node.

e Type 3: A 2nd-downstream feature is a non-DDN node that has
no links with DDN nodes, i.e., if node i is a non-DDN node, and
its linked neighbors iy, i, ..., i, are all non-DDN members, then
i is a Type 3 node.

Next, Table 2 shows that the comparative TNE in Eq. (9) based
on case samples has the following generic properties in terms of
its dynamics, which correspond to the three types of nodes
described above when the system is near a critical transition:

Therefore, based on these three cases, we concluded that the
average TNE (Eq. (8)) increases drastically as the system
approaches a critical transition point. This critical phenomenon
coincides with the physical meaning of the conditional entropy
in terms of the low resilience or robustness in a transition state,
i.e., the next state transition depends largely on its current state,
which implies a low conditional entropy due to this dependence
near the transition state. We adopted an efficient strategy for esti-
mating the comparative entropy (Eq. (9)) using only those nodes
with increasing TNEs, rather than all of the nodes in the network.
Using such a scheme, the comparative entropy (Eq. (9)) is more
sensitive to a transition state.

The derivation of the TNE is based on the properties of the DDN,
while the TNE provides more information for studying the DDN.
There are several advantages in using the TNE to detect a critical
transition. First, it is easier to detect DDN nodes directly, rather
than a dominant group in the overall network, which is generally
a difficult task because of the scale of datasets. Second, we only
need to focus on the local structure of a network node by node,
which significantly reduces the computational complexity.
Therefore, predictions based on the TNE method are DDN-free.

It is reasonable to ignore any nodes with increasing TNEs
because this may be caused by noise or data errors. In a transition
state, the remaining nodes with decreasing TNEs form a
sub-network, which is used as the index or criterion for detecting
a critical transition and the leading network in the transition to a

Table 2
Node type and descriptions.

Type Node TNE for a local network
1 DDN feature Increase drastically

2 1st-downstream feature Increase

3 2nd-downstream feature No significant change

disease state. Our analysis is based on the local structure, i.e., the
targeted node and its linked neighbors, and the final
sub-network encapsulates the most critical information allowing
the determination of the dynamics of the overall network.
Therefore, our method simplifies the computation and avoids the
effect of noise, providing a more accurate and reliable early
warning signal. To summarize the above theoretical methods, we
have the following statement: (1) Decrease of the average TNE is
the early warning signal for detecting a critical transition. (2)
Criterion for DDN can further identify features of the leading
network.

2.6. A computational pipeline for CSF protein DDN analysis

In order to make our DDN analysis more clearly, our computa-
tional process was summarized as follows.

(1) CSF proteomics data analysis and subsequent data cleaning
were as previously described [6,25,26]. All relevant raw data
can be found on our website: http://translationalmedicine.
stanford.edu.

(2) The DDN features were selected according to the theoretical
methods described above and in Refs. [22,23].

(3) Determine the critical transition time point by using TNE
and criterion described above and in Refs. [21,22]. These net-
works were then visualized by using Cytoscape software
version 3.2 (http://www.cytoscape.org).

(4) Functional analysis of the DDN features was conducted by
searching PubMed http://pubmed.com.

3. Results and discussion
3.1. Identify the transition state

Based on comparative TNE, we selected 35 features out of
247 mass spectrometric spectral features to identify the transi-
tion state of brain tumor. Specifically, the sharp increase of the
TNE index (I score) (Fig. 2B) can be used as an early-warning sig-
nal for the imminent critical transition, which commits the brain
tumor development. The selected 35 features are listed in
Table 3.

Unlike the traditional molecular biomarkers whose differential
expressions reflect the presence or severity of the disease state,
the DDN is a strongly correlated feature network where the values
of features dynamically change in the transition state as shown in
Fig. 1. The system tends to present increasingly instability
approaching the transition state, where the DDN features
collectively fluctuate. These DDN characteristics at the transition
state can be exploited to detect the early warning signal of a
complex disease in the early stage, which however is not possible
using traditional biomarkers or their associated methods. Hence,
the detection of the DDN implies that a particular subject system
is in the transition state with high-level system entropy.

3.2. Development of brain tumors in progeny of ENU-exposed rats

ENU exposed rats (n=64) (13 from P30, 16 from P60, 22 from
P90, 6 from P120 and 7 from P150) were examined histologically
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Table 3
Selected DDN mass spectrometric spectral features (n = 35) and descriptions.
m/z Laser Note
energy
13913 Med Glutathionylated transthyretin

3487 Low
3544 Low
14120 Med

o1-Macroglobulin fragments (1212-1243)
Neuroendocrine protein 7B2 c-terminal peptide
Sinapinic acid adduct of glutathionylated
transthyretin

Prostaglandin D2 synthase

Z =2 for glutathionylated transthyretin

22893 High
6953 Low
5704 Med

66110 High
5789 Med

14285 Med
4196 Low
6795 Med
5788 Low

15847 Med
3641 Low
7515 Med
5375 Med
6909 Med
3992 Low

11848 Med
4362 Low
8913 Med

11861 Med
3941 Low
3700 Low
4891 Low
7061 Low
3504 Low
4161 Low
5818 Low
8569 Med
7444 Med

12772 Med

22034 High
4734 Low

Albumin

Z =2 for transthyretin

Hemoglobin subunit beta

Z = 2 for glu-cys-transthyretin

Z =3 for albumin (66110)

for the presence of nestin+ and OPN+ precursor lesions (nests) as
well as the appearance of tumors, which was detected by MRI after
day 90. Consistent with previous reports [27,28], single or multiple
nestin+ precursor cell cyst were noted in all rats by P30 (100%). In
contrast, microtumors were not noted in any rats sacrificed at P30,
only 4 rats (25%) at P60, while ~60% of rats at P90, and 100% of rats
at P120-150 (Fig. 3B, left). The rat death was firstly found after day
120, which is showed by the surviving curve in Fig. 3B, right. No
macroscopic tumors were found in any animals at the time points
examined.

3.3. Application of transition-based network entropy (TNE) method to
identify dynamic drive network and critical transition state before
hyperplasia

CSF was collected from a total of 64 ENU and 60 saline exposed
rats and mass spectra of CSF applied to CM10 ProteinChip arrays
were collected for the five postpartum ages (P30, P60, P90, P120
and P150) as described in Section 2 (Table 1). The relative intensi-
ties of peaks were different in the CSF of rats obtained at these five
ages. For this reason we grouped the spectra by postpartum age for
baseline correction, noise reduction and intensity normalization.
The spectra for all five ages was then grouped together for peak
findings, and then separated again for peak analysis at each age.
Our DDN method was applied to analyze the case and control mass
spectrometry profiles, which allowed the identification of
early-warning CSF proteome DDN components. The DDN'’s
transition-based network entropy was proposed as a general
early-warning indicator for the transition to hyperplasia, which

appeared to be related to the tumor initiation related CSF proteome
changes and progression. It can provide better insight into the
pathophysiology and give clues to the tumor environment impact.
Based on the state transition process, we derived the
transition-based network entropy (TNE) analyzing the CSF pro-
teomes. As shown in Fig. 2B, the composite TNE index I increased
sharply around 60 days, indicating a critical transition into hyper-
plasia during glioma development after P60.

3.4. DDN biomarkers vs. traditional biomarkers

Traditional disease diagnostic biomarkers differentiate disease
and normal states, whose expressions reflect the presence or sever-
ity of the disease state and are required to have statistically distinct
quantifications between case and control subjects. Our novel dis-
ease transition associated DDN network feature markers are differ-
ent from these diagnostic biomarkers. Specifically, we first defined
the TNE, and proved that TNE can serve as a general early-warning
indicator of any imminent transitions. The DDN features collec-
tively form a strongly correlated feature network where the values
of features fluctuate in a coordinated manner. When the system
approaches the transition state, the DDN features reveal a unique
kinetic pattern of pronounced fluctuation. Furthermore, the identi-
fication of a dynamic driver network in this study validates our ini-
tial hypothesis of the disease transition state when the system
switches from normal to disease state.

With the CSF proteomics survey of the ENU model rats, we con-
structed CSF protein networks to gauge the physiological and
pathological status of the cerebral compartment at different days
of age occurring with the gradual appearance of cellular hyperpla-
sia. We employed our previously developed transition-based net-
work entropy (TNE) [23] and identified the drastic or a
qualitative transition at P60 in the CSF proteome network before
hyperplasia, which corresponds to a so-called bifurcation point in
dynamical systems theory [29]. When the ENU rats were at P60
and CSF proteome network was near the critical point, we found
that a dominant group of 35 CSF proteins which we defined as
the dynamic driver network (DDN) of CNS protein features collec-
tively increased the TNE that is conditional on the previous state of
a local dynamical network in a Markov process, whereas there
were no significant TNE fluctuations before and after P60.

3.5. Identification of DDN biomarkers

Our current effort in up-to-date proteomics identified 35 of the
DDN CSF proteins, with 5 transthyretin species of different post-
translational modifications. Consistent with our previous observa-
tion and other reports, CSF transthyretin protein species were
shown to differentially express in our ENU rat model [6] and
human brain tumor [7,8,30]. In this regard, CSF transthyretin is a
biomarker, not only differentiates between case and control, but
also functions as a DDN component with sharp TNE increase at
rat age P60. Our previous results indicated that, between case
and control groups, total transthyretin levels did not differ while
there were significant differences of posttranslational modifica-
tions. It is possible that variation of different translational modifi-
cations may disrupt transthyretin’s normal functions in the
transport of both thyroxine and reinol, which may drive the critical
transition of cellular hyperplasia after P60 during tumorigenesis. It
seems unlikely that the fluctuation in CSF transthyretin levels
before hyperplasia in this study represented release from these
small nests and microtumors as variation diminished prior to
and post the critical transition at P60.

Another two CSF DDN proteins identified in our study were
albumin and prostaglandin D2 synthase (PGD2S). Both proteins
are abundant in the CSF [31-34] and considered as indicative of
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Fig. 3. Time course analysis of brain tumor development revealing the critical transition state. (A) The dynamical change is illustrated for the whole feature network, with
DDN located in the lower left, where the color of the nodes represents the fluctuation strength of DDN features. DDN analysis showed a significant change at P60, which
illustrates the imminent critical transition. The early-warning signal detected by DDN preceded the detection of hyperplastic microtumors observed in 90 days. (B) Left,
histogram of percentage of ENU-exposed rats with nests or microtumors. Right, surviving curve of ENU-exposed rats after day 120.

absence of hyperplasia before P60, therefore, the differential
expression between case and control or variations observed before
P60 reflected either albumin release from tumor cells or the impact
of a space occupying lesion before apparent imaging changes. Our
previous hypothesis [6] of these proteins’ differential CSF abun-
dance was the disruption of the blood brain barrier during
tumorigenesis.

From the network level of an ensemble of 35 biomarkers, in the
critical transition state of brain tumor, the DDN nodes represent
distinct biomarkers with computationally derived relationships.
Our DDN-driven analysis facilitates data integration across multi-
ple levels of biological complexity and may define contribution
of specific biomarkers to systems-wide properties of brain
tumorigenesis.

4. Conclusions

Our DDN discovery at P60 findings and the DDN CSF protein
identification results were consistent with the hypothesis that a
CSF environmental change was initiated before the hyperplasia |
micro tumor stage (before P60), similar to what has been reported
in systemic cancers including breast and prostate lesions [3,35].
11/35 DDN CSF proteins were identified and 24 CSF protein identi-
ties remained to be determined. Upon the completion of all DDN
CSF protein identifications, we will be in a much better position
to explore CSF environmental changes committing the hyperplasia
development path. Nevertheless, our dynamic network analysis
suggests, in regard to tumorigenesis, to focus at P60 of the rat
glioma model to probe the in situ environment changes preceding
the development of hyperplasia abnormalities. This may lead to
not only insights of host tumor environment interactions, but also
the development of an effective time window for novel therapeutic
strategies in primary brain tumor.
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