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Abstract 

Background 

Multisystem inflammatory syndrome in children (MIS-C) is a novel disease identified during the 

COVID-19 pandemic characterized by systemic inflammation following SARS-CoV-2 infection. 

Delays in diagnosing MIS-C may lead to more severe disease with cardiac dysfunction or death. 

Most pediatric patients recover fully with anti-inflammatory treatments, but early detection of 

MIS-C remains a challenge given its clinical similarities to Kawasaki disease (KD) and other 

acute childhood illnesses.  

 

Methods 

We developed KIDMATCH (KawasakI Disease vs Multisystem InflAmmaTory syndrome in 

CHildren), a deep learning algorithm for screening patients for MIS-C, KD, or other febrile 

illness, using age, the five classical clinical KD signs, and 17 laboratory measurements 

prospectively collected within 24 hours of admission to the emergency department from 1448 

patients diagnosed with KD or other febrile illness between January 1, 2009 and December 31, 

2019 at Rady Children’s Hospital. For MIS-C patients, the same data was collected from 131 

patients between May 14, 2020 to June 18, 2021 at Rady Children’s Hospital, Connecticut 

Children’s Hospital, and Children’s Hospital Los Angeles. We trained a two-stage model 

consisting of feedforward neural networks to distinguish between MIS-C and non MIS-C 

patients and then KD and other febrile illness. After internally validating the algorithm using 10-

fold cross validation, we incorporated a conformal prediction framework to tag patients with 

erroneous data or distribution shifts, enhancing the model generalizability and confidence by 

flagging unfamiliar cases as indeterminate instead of making spurious predictions. We externally 

validated KIDMATCH on 175 MIS-C patients from 16 hospitals across the United States. 
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Findings 

KIDMATCH achieved a high median area under the curve in the 10-fold cross validation of 

0.988 [IQR: 0.98-0.993] in the first stage and 0.96 [IQR: 0.956-0.972] in the second stage using 

thresholds set at 95% sensitivity to detect positive MIS-C and KD cases respectively during 

training. External validation of KIDMATCH on MIS-C patients correctly classified 76/83 (2 

rejected) patients from the CHARMS consortium, 47/50 (1 rejected) patients from Boston 

Children's Hospital, and 36/42 (2 rejected) patients from Children’s National Hospital. 

 

Interpretation 

KIDMATCH has the potential to aid frontline clinicians with distinguishing between MIS-C, KD, 

and similar febrile illnesses in a timely manner to allow prompt treatment and prevent severe 

complications. 

 

Funding 

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National 

Heart, Lung, and Blood Institute, Patient-Centered Outcomes Research Institute, National 

Library of Medicine 
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Introduction 

As the coronavirus disease (COVID-19) pandemic spread, reports of children with SARS-CoV-

2-associated multisystem inflammatory conditions emerged1–6. Clinical features of this new 

disorder, named Multisystem Inflammatory Syndrome in Children (MIS-C), include fever, 

gastrointestinal symptoms, and elevated inflammatory markers7. Complications may include 

shock and multiorgan failure. According to the Centers for Disease Control and Prevention 

(CDC), a total of 5,973 MIS-C cases and 52 MIS-C deaths have been reported nationwide as of 

November 30, 20218. Despite its low prevalence, MIS-C is a serious condition with potential to 

cause life-threatening illness, and the lack of a specific diagnostic test makes recognizing MIS-C 

a challenge. 

 

Treatments for MIS-C include intravenous immunoglobulin (IVIG), corticosteroids, and anti-

inflammatory biologic agents that rely on timely diagnosis of MIS-C to be most effective9. 

Kawasaki disease (KD) is an acute pediatric illness of unknown cause characterized by 

inflammation of the coronary arteries associated with fever and clinical criteria including rash, 

conjunctival injection, changes in lips or oropharyngeal mucosa, cervical lymphadenopathy, and 

changes in peripheral extremities10. Many of these clinical features overlap with MIS-C11. In 

response to the difficulty clinicians have in diagnosing and differentiating MIS-C and KD, we 

applied artificial intelligence (AI) to distinguish among children with MIS-C, KD, and other 

febrile illnesses characterized by similar clinical and laboratory features. Although there are 

reported differences such as older age, lower platelet count, and elevated inflammatory markers 

in MIS-C patients, none of these features alone was sufficient to diagnose MIS-C4. Currently, 
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there is no published machine learning algorithm to differentiate between KD and MIS-C that 

has been externally validated.  

 

We developed a two-stage AI model to classify patients as having MIS-C, KD, or other febrile 

illness using clinical signs and laboratory values that would be available at the time of a patient’s 

initial evaluation (Figure 1). Pediatric patients with other febrile illness, designated as febrile 

children (FC), were chosen based on the presence of fever and clinical or laboratory features 

suggestive of MIS-C and KD. The model in Stage 1 was trained to differentiate between MIS-C 

and other pediatric febrile conditions. The model in Stage 2 was trained to further classify 

patients falling into the “other” category as KD or other pediatric febrile illness. Since KD and 

MIS-C data distributions may vary across different sites, we incorporated a conformal prediction 

framework within the model12. Conformal prediction reduces false alarms by identifying 

unfamiliar samples in new patient populations when compared to the training cohort and assigns 

indeterminate labels rather than making spurious predictions. The laboratory tests incorporated 

into KIDMATCH are commonly obtained for pediatric patients in many outpatient and inpatient 

medical settings, and the clinical features would be easily assessable by frontline clinicians. The 

use of such readily available data enables KIDMATCH to be potentially deployable immediately 

across the United States without the need for specialized laboratory tests.  

 

Methods 

Subjects 

MIS-C patients were defined according to the CDC case definition17 and enrolled from May 14, 

2020 to June 18, 2021. All MIS-C patients had positive antibody testing for either the 
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nucleocapsid or spike protein of SARS-CoV-2 and none had received a SARS-CoV-2 vaccine. 

KD patients met the case definition of the American Heart Association18 for either complete or 

incomplete KD. In order to avoid the potential for misclassification, all KD subjects were 

enrolled from 2009-2019 prior to the pandemic. All KD subjects were diagnosed and treated by 

one of two highly experienced KD clinicians (J.C.B. and A.H.T.). FC subjects were also enrolled 

from 2009-2019 and met the following case definition: previously healthy child with fever for at 

least 3 days plus at least one of the clinical criteria for KD. Over 50% of the FC were referred for 

evaluation because of a clinical suspicion for KD. The final diagnoses for the FC were 

adjudicated 2-3 months after enrollment by two experienced pediatric clinicians who reviewed 

the clinical outcomes in the medical record and all available test results (Supplemental Table 3). 

A viral syndrome was defined as a self-limited illness that resolved without treatment and 

without apparent sequelae. Written consent or assent as appropriate was obtained from parents 

and subjects and the study was approved by the Institutional Review Boards (IRB) of the 

University of California San Diego (UCSD), Connecticut Children’s Medical Center, Children’s 

Hospital Los Angeles, Boston Children’s Hospital, and Children’s National Hospital. UCSD 

served as the central IRB of record for the CHARMS study participants. 

 

Data Preprocessing 

We used age, the five classical clinical KD signs, and 17 laboratory measurements as features for 

KIDMATCH based on guidance from the clinician collaborators and availability of laboratory 

test results for the majority of the training cohort. The five clinical signs were rash, conjunctival 

injection, changes in lips or oropharyngeal mucosa, cervical lymphadenopathy, and changes in 

peripheral extremities. Laboratory data included white blood count, age-adjusted hemoglobin, 
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platelets, polymorphonuclears or neutrophils, bands, lymphocytes, atypical lymphocytes, 

monocytes, eosinophils, absolute neutrophil count, absolute band count, erythrocyte 

sedimentation rate, C-reactive protein, alanine aminotransferase, gamma-glutamyl transferase, 

albumin, and sodium (Table 1, Supplementary Table 2). Due to the absence of bands and 

atypical lymphocytes in patients with automated differentials for the complete blood count, an 

indicator variable was added for the type of differential (0 = manual, 1 = automated). For 

samples with automated differentials, we imputed the values for bands, atypical lymphocytes, 

and absolute band counts using the mean of the respective feature. Outlier values defined as less 

than the 0.5th percentile or greater than the 99.5th percentile were set to the values of 0.5th 

percentile if lower or 99.5th percentile if higher. All other missing laboratory values were 

imputed using K-nearest neighbors as the mean of the respective feature for the 10 most similar 

samples from the training data. Data were normalized for each laboratory feature except 

hemoglobin by applying normalization transformations and then subtracting the mean and 

dividing by the standard deviation. Hemoglobin was normalized for age.  

 

Model Design 

In KIDMATCH, we implemented a conformal prediction framework to reject out of distribution 

samples12 and separated the classification into two stages (Figure 1). If a test sample was 

rejected by the conformal prediction framework, no prediction was calculated. In Stage 1, the 

model calculated an MIS-C risk score between 0 and 1 for test samples with 1 being the highest 

MIS-C risk. In Stage 2, the model calculated a KD risk score between 0 and 1 where 1 is the 

highest risk for KD. Thresholds for each stage were set during internal validation to identify 95% 

of the MIS-C and KD cases in the test set for Stage 1 and Stage 2, respectively.  
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We trained a feedforward neural network on each of the stages using Tensorflow v.2.3.1 with a 

logistic regression using scikit-learn v0.24.2 as the baseline model. For both stages, the neural 

network was trained with the Adam optimizer at a learning rate of 0.01 and equally weighted 

batches of 100 and 200 samples from each class for Stage 1 and Stage 2, respectively. Each 

neural network consisted of an input layer (23 units), a single hidden layer (12 units, ReLu 

activation function, L2 regularization, 20% dropout rate), and a softmax output layer (2 units, 

binary cross entropy loss function). 

 

Model Training and Evaluation 

We split the patients into training and test cohorts using an 80:20 split and employed a 10-fold 

cross validation to assess performance. Patients with any missing values were not considered for 

the test set. All patients were used from the training cohort in Stage 1 while MIS-C patients were 

omitted from the training cohort in Stage 2. Performance of the models were evaluated using 

accuracy, area under the receiver operating characteristic curve (AUC), positive predictive value 

(PPV), negative predictive value (NPV), false positive rate (FPR), and false negative rate (FNR) 

calculated at a minimum 95% sensitivity for the MIS-C and KD classifications for Stage 1 and 

Stage 2 respectively. 

 

Conformal Prediction 

The trust sets used in the conformal prediction framework were constructed by filtering patients 

in the training cohort who had more than one missing value and MIS-C risk scores greater than 

the 95th percentile (Supplementary Table 1). We then constructed a trust set for each of the 

three classifications (FC, KD, MIS-C) using patients from the training set. Finally, 200 randomly 
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sampled patients were used for the FC and KD trust sets, and all MIS-C patients were used for 

the MIS-C trust set. We generated feature representations for the conformal prediction 

framework by passing the normalized features of the training samples through the first hidden 

layer of the neural network. Feature representations from the test samples were compared to each 

of the conformal trust sets using cosine similarity, and if a test sample was rejected by all three 

trust sets, then the model did not calculate risk scores for the test sample. 

 

Shapley Values 

To explain the model predictions, we calculated the Shapley values for the test set using the 

SHAP Python library13. Normalized data from the training set was used as the background to 

compare normalized test set data for Stage 1 and Stage 2. 100 random background samples were 

used to calculate the Shapley values for each feature in the internal test set. 

 

Statistical Analysis 

P-values were calculated by the Mann-Whitney test for continuous variables between two groups, 

the Kruskal-Wallis test for three groups, the Chi-square test for categorical variables within the 

cohort used for internal validation, and the DeLong test19 for AUC. 

 

Results 

Study population 

A total of 1517 patients diagnosed from January 1, 2009 to October 1, 2021 with MISC (n=69), 

KD (n=775), or other febrile illnesses (n=673) were identified from a REDCap database at the 

Kawasaki Disease Research Center in the University of California San Diego (UCSD). 
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Laboratory tests and clinical signs were obtained at the time of initial evaluation and prior to 

treatment for all patients. To improve the generalizability of the model, we added MIS-C patients 

from Connecticut Children’s Hospital (n=16) and Children’s Hospital of Los Angeles (n=50) 

when training the model for a total of 135 MIS-C patients during internal validation (Table 1). 

External validation was performed using MIS-C clinical data (n=175) enrolled from May 14, 

2020 to June 18, 2021 from the following sites: Boston Children’s Hospital (n=50), Children’s 

nc Hospital (n=42), and the CHARMS consortium (n=83), a 14-site multicenter database of 

MIS-C patients funded by the Patient Centered Outcomes Research Institute (PCORI) and 

housed at UCSD. In a comparison of laboratory data among the groups, MIS-C patients had 

higher band counts, lower sodium levels, lower platelet counts, and higher C-reactive protein (p 

< 0.0001) compared to the FC and KD cohorts, consistent with prior reports1,4 (Table 1).  

 

Internal Validation 

The 10-fold cross validation results for Stage 1 and 2 are shown in Table 2. The neural network 

in Stage 1 had similar accuracy, area under the receiver operating characteristic curve (AUC), 

positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR), and 

false negative rate (FNR) compared to the logistic regression baseline in the validation set when 

classifying samples as MIS-C or not MIS-C. In Stage 2, the neural network compared favorably 

to the logistic regression baseline in terms of accuracy, PPV, and FPR when classifying samples 

as FC or KD based on thresholds set at 95% sensitivity for KD samples (Table 2). We chose 95% 

sensitivity based on clinician feedback to avoid missing true positive subjects. 
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We selected the model with the highest accuracy during the 10-fold cross-validation at each 

stage to use in the final model. To ensure model generalizability and similar performance across 

external sites, we constructed a conformal prediction framework using the training samples from 

the final model12. Briefly, we selected the parsimonious combination of missingness and risk 

score with the highest weighted F1 score to construct the conformal trust sets (Supplementary 

Figure 2, Supplementary Table 1). This approach rejected 3/149 (2%) of the FC samples, 

6/165 (3.6%) of the KD samples, and none of the MIS-C samples in the validation set. The ROC 

curves for the final model indicated that the neural networks had high sensitivity and specificity 

with an AUC of 0.98 in Stage 1 and 0.97 in Stage 2 (Figure 2). 

 

The neural networks trained for each stage in the final model showed robust performance when 

setting thresholds (Stage 1 – 0.36, Stage 2 – 0.60) at a 95% sensitivity level (Figure 2). Although 

there was no statistical difference in the AUC for Stage 1 (p = 0.174) and Stage 2 (p = 0.594), the 

neural networks were chosen for the final model as the conformal prediction framework relied on 

feature representations that could not be calculated using logistic regression. In addition, the 

majority of patients at UCSD had a complete blood count with manual differential, but the 

external sites had a significant proportion of automated differentials. The neural networks were 

able to adjust for the difference between manual complete blood counts and automated 

differential counts effectively by incorporating an indicator variable as input to the model. 

 

Devising a diagnostic test for two diseases for which there is no gold standard test presents 

special challenges. As a sensitivity analysis, we tested KD patients with coronary artery 

aneurysms and MIS-C patients who had a reduced left ventricular ejection fraction as 
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characteristic patient subsets who were unlikely to be misclassified by clinicians. The final 

model correctly assigned 94% of the 164 KD patients with coronary artery aneurysms and 95% 

of the MIS-C patients with reduced ejection fraction (Supplementary Figure 1). 

 

Feature Importance 

To determine how the features contributed to the model predictions, we used Shapley values, 

specifically the Shapley Additive exPlanations (SHAP) method13. In Stage 1, the most important 

features that distinguished MIS-C vs non MIS-C patients were serum sodium, platelet count, 

neutrophils, and C-reactive protein (Figure 3). The patterns observed were consistent with 

published reports of the laboratory testing characteristics of MIS-C patients1,4. In Stage 2, 

changes in peripheral extremities, erythrocyte sedimentation rate, conjunctival injection, and 

erythema of the lips or oropharyngeal mucosa were the most important features for 

differentiating between FC and KD. Three of the four aforementioned features are clinical signs 

used by clinicians to diagnose KD, so it is not surprising that the presence of one or more of 

these clinical signs contributed to a higher Stage 2 risk score and higher probability of KD. The 

next most important features were age, with younger patients more likely to have KD, and 

gamma glutamyl transferase (GGT), for which higher levels indicate hepatobiliary inflammation 

often observed in KD14.  

 

External Validation 

We externally validated KIDMATCH using MIS-C patients from the CHARMS consortium, 

Boston Children’s Hospital (Boston), and Children’s National Hospital (CNH). Our conformal 

prediction framework rejected 2/83 (2.4%), 1/50 (2%), and 2/42 (4.8%) samples from the 
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CHARMS consortium, Boston, and CNH respectively. KIDMATCH accurately predicted MIS-C 

in 93.8% of CHARMS patients, 95.9% of Boston patients, and 90% of CNH patients after 

conformal prediction (Table 3). Examination of the Stage 1 risk scores for each site revealed 

most MIS-C patients were confidently classified as MIS-C (risk score > 0.8) (Figure 4). 

 

Although we had only 26 MIS-C patients in the internal validation testing cohort, KIDMATCH 

generalized well to external MIS-C cohorts with 90% or greater accuracy at all three external 

sources despite missingness of 1-4 features, most often GGT. Interestingly, the predictive 

performance was not replicated consistently across all sites. CNH had the lowest prediction 

accuracy at 90%. Further investigation revealed that their laboratory values for albumin were 

significantly lower than the MIS-C training distribution (2.9 [2.5-3.2] vs. 3.6 [3.2-4.0] g/dL, 

median [IQR], p < 0.001) due to differences in the test platform used by that clinical laboratory 

(Supplementary Figure 3). In addition, all misclassified MIS-C patients from CNH had a 

normal serum sodium of 138 mmol/L or higher, and the distribution of serum sodium values 

from this laboratory was significantly higher compared to the other MIS-C clinical sites (136 

[134-139] vs. 133 [130-135], median [IQR], p < 0.01). While these values deviated from those 

observed in other sites, we cannot dismiss the possibility that the serum albumin and sodium 

values are valid as outlier values have been observed in MIS-C patients within the training 

cohort. Fortunately, the model showed consistent performance when handling samples with 

outlier values. The reliance of the Stage 1 algorithm on characteristic MIS-C laboratory test 

values such as low serum sodium and low platelet count increases the probability of 

misclassification when presented with normal values from a MIS-C patient (Supplementary 
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Figure 4). However, the model enables clinicians to explore how the relevant features are 

contributing to the risk score and adjust their clinical judgement accordingly. 

 

Discussion 

We present a machine learning model for screening patients with MIS-C, KD, or similar febrile 

illnesses using clinical signs and laboratory data routinely collected during the initial evaluation 

of these patients. To date, this is the first application of artificial intelligence to aid in the 

diagnosis of MIS-C and differentiate it from KD. KIDMATCH has the ability to reject test 

samples that are outside of the distribution in the training set, which provides a measure of 

confidence by statistically identifying outlier inputs. It is interpretable on a case-by-case basis by 

examining the most important features and whether they impact the MIS-C risk score positively 

or negatively. KIDMATCH showed consistent performance across different hospitals and the 

conformal framework identified outlier samples that would have been misclassified otherwise, 

thus demonstrating our algorithm can be applied in diverse clinical settings. A web-based user 

interface was developed using Streamlit, an open-source framework for building applications in 

Python, to assist clinicians with calculation of the proposed risk scores and assessment of the top 

factors contributing to risk (Supplementary Figure 5). 

 

A strength of our work is the universal availability of the required features in the majority of 

healthcare settings and the validation using external cohorts. The only published model 

addressing a machine learning approach to MIS-C diagnosis includes features that may not be 

available in many clinical settings such as ferritin and D-dimer15. In addition, the model was not 

tested against febrile pediatric control patients and was not externally validated. 
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We recognize limitations to our work due to the limited availability of FC and KD data for 

external validation. There is no gold standard for KD or MIS-C diagnosis. Thus, we cannot 

exclude some degree of misdiagnosis in either the training or test set. However, the validation 

performance demonstrated internal consistency with the signs and laboratory tests used by 

KIDMATCH. It is unknown how the model would perform on FC and KD patients from other 

hospitals as we were unable to obtain these data. The thresholds established during internal 

validation may not be generalizable to different sites and shifting the threshold may be required 

to adjust for different prevalence rates. However, the high model AUC means that the model can 

be used to effectively prioritize febrile patients for further evaluation of MIS-C or KD. A key 

step for deployment will be to establish standardized conditions for use so the algorithm is 

applied to the appropriate patients. The current algorithm is only optimized for laboratory test 

values collected at the time of initial evaluation, and it is unknown how it would perform with 

data collected at a later timepoint. It is also unknown how end users should deal with patients 

flagged as indeterminate, but a possible solution could be to order more specialized tests such as 

ferritin, troponin, BNP/NT-proBNP, and D-dimer as well as IgG antibody to SARS-CoV-2 as is 

routine practice for suspected MIS-C patients16.  

 

Based on these data, the proposed algorithm is a generalizable and trustworthy tool for the 

diagnosis of MIS-C and KD during the initial evaluation of the patient. Future work includes 

retrospective validation on external FC and KD patients and prospective validation on MIS-C 

patients as well as implementing KIDMATCH within the clinical workflow. As the first 
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externally validated machine learning solution for the diagnosis of MIS-C, KIDMATCH has the 

potential to aid frontline clinicians and improve patient outcomes through timely diagnosis. 
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Figures 

Figure 1: Model architecture. A patient could be classified as either MIS-C, febrile child (FC), 

or Kawasaki disease (KD) if the input data was not rejected by the conformal prediction 

framework. 
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Figure 2: Receiver operating curves for the best cross-validation fold of (A) Stage 1 and (B)

Stage 2 in terms of AUC. 
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Figure 3: SHAP summary plot for (A) Stage 1 and (B) Stage 2 with raw feature values. A

positive SHAP value means the corresponding feature value increases the risk score and vice

versa. In Stage 1, a higher risk score indicates a higher probability of MIS-C. In Stage 2, a

higher risk score indicates a higher probability of KD. Features are ranked in order of

importance from top to bottom.   
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Figure 4: Stage 1 MIS-C external validation risk scores from (A) Boston, (B) CHARMS, and (C)

CNH patients. Patients with risk scores greater than the threshold (0.36, denoted by a red line)

were classified as MIS-C, and patients with lower risk scores were passed to Stage 2. 

A)                                              B) 

C) 
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Tables 

Table 1: Demographic and clinical characteristics of the patients used in internal validation 

from three clinical sites: Rady Children’s Hospital San Diego (n=1517), Connecticut Children’s 

Hospital (n=16), and Children’s Hospital of Los Angeles (n=50). Bolded characteristics are 

model features. 

  MIS-C (n=131) 
Kawasaki disease 

(n=775) 
Febrile control 

(n=673) 
p| | 

Age, yrs* 8.6 (4.3-11.3) 2.9 (1.5-4.8) 3.4 (1.5-5.9) <0.0001 

Sex, male, n (%) 77 (59) 463 (59.7) 394 (58.5) NS 

Ethnicity, n (%) 
 

<0.0001 

     Asian 5 (3.8) 124 (16.0) 47 (7.0) 
     African American 14 (10.7) 23 (3.0) 10 (1.5) 
     White 8 (6.1) 167 (21.5) 167 (24.8) 
     Hispanic 92 (70.2) 275 (35.5) 272 (40.4) 
     > 2 races or other 12 (9.2) 186 (24.0) 114 (16.9) 
     No information 0 0 63 (9.4) 
Median Zmax† 1.6 (0.8-2.4) 1.7 (1.2-2.4) NA NS 
Lowest LV Ejection 
Fraction, % 

57 (47-61) 66 (63-70) NA <0.0001 

Illness day of Sample 
collection‡ 

4 (3-5.5) 5 (4-7) 5 (4-7) NS 

Automated 
differential, n (%) 

37 (28.2) 33 (4.3) 91 (13.5) <0.0001 

Clinical Sign, n (%)   

Rash 74 (56.5) 715 (92.3) 442 (65.7) <0.0001 

     Red Eyes 78 (59.5) 725 (93.5) 343 (51.0) <0.0001 

     Oral Changes 48 (36.6) 723 (93.3) 304 (45.2) <0.0001 
Enlarged  
Cervical LN 

22 (16.8) 274 (35.4) 151 (22.4) <0.0001 

Extremity     
Changes 

18 (13.7) 625 (80.6) 131 (19.5) <0.0001 

Laboratory data     
WBC, 103/μL 9.8 (6.9-13.0) 13.2 (10.4-17.0) 9.5 (6.4-13.3) <0.0001 

Polys, % 71 (58-81) 58 (47-69) 47 (31-62) <0.0001 

Bands, % 12 (2-24) 7 (2-15) 5 (2-11) <0.0001 

Lymphocytes, % 11 (6-19) 20 (12-31) 32 (18-47) <0.0001 
Atypical 
lymphocytes, % 

0 (0-1) 0 (0-1) 1 (0-3) <0.0001 
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Monocytes, % 3 (1-5) 6 (3-8) 8 (5-11) <0.0001 

Eosinophils, % 1 (0-3) 2 (1-4) 0 (0-1.3) <0.0001 

ANC, /μL 
7980 (5476-

10525) 
8892 (6305-11768) 4800 (2599-8208) <0.0001 

ABC, /μL 1160 (184-2168) 891 (299-2095) 438 (148-1205) <0.0001 

ALC, /μL 925 (549-1652) 2565 (1412-3963) 2730 (1633-4356) <0.0001 

ZHgb -1.7 (-3.0 to -0.8) -1.3 (-2.3 to -0.5) -0.3 (-1.3 to 0.5) <0.0001 
Platelet Count, 
103/mm3 

160 (112-222) 339 (267-426) 247 (184-322) <0.0001 

ESR, mm/h 49 (32-75) 60 (39-75) 29 (15-45) <0.0001 

CRP, mg/dL 18.9 (8.2-26.0) 7.0 (4.3-16.9) 2.9 (1.2-6.0) <0.0001 

ALT, IU/L 39 (22-63) 46 (26-117) 27 (19-38) <0.0001 

GGT, IU/L 36 (24-85) 46 (18-128) 15 (12-20) <0.0001 

Albumin, g/dL 3.6 (3.1-4.0) 3.8 (3.5-4.2) 4.1 (3.8-4.4) <0.0001 

Sodium, mmol/L 133 (130-135) 137 (134-139) 138 (136-139) <0.0001 

 
*Values are median (Interquartile range (IQR)) unless otherwise specified; †: Maximum Z score 
(internal diameter normalized for body surface area) for the right and left anterior descending 
coronary arteries. ‡: Illness Day 1= first day of fever. | |: p-values were calculated by Mann-
Whitney test for continuous variables between two groups, Kruskal-Wallis test for three groups 
and Chi-square test categorical variables. LN: lymph nodes, LV: left ventricle, WBC: white 
blood cell count, Polys: polymorphonuclears or neutrophils, ANC: absolute neutrophil count, 
ABC: absolute band count, ALC: absolute lymphocyte count, ZHgb: hemoglobin concentration 
normalized for age, PLT: platelet count, ESR: erythrocyte sedimentation rate, CRP: C-reactive 
protein, ALT: Alanine aminotransferase, GGT: gamma-glutamyltransferase, NS: not significant, 
NA: not applicable. 
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Table 2: 10-fold cross validation performance metrics for the training and validation cohorts in 

(A) Stage 1 and (B) Stage 2. All values reported as median [IQR]. 

A) 

Stage 1 Accuracy  AUC PPV NPV FPR FNR 
Training 

Logistic 
Regression 

95.4%  
[95.0-95.5]% 

98.6%  
[98.5-98.7]% 

70.9%  
[69.4-72.2]% 

99.1%  
[99.0-99.2]% 

4.4%  
[4.0-4.6]% 

7.6%  
[6.7-8.4]% 

Neural 
Network 

96.4%  
[96.1-97.2]% 

99.5%  
[99.4-99.6]% 

74.7%  
[73.9-78.8]% 

100.0% 
[99.9-100]% 

3.7%  
[3.1-4.0]% 

0.0%  
[0.0-0.8]% 

Validation 

Logistic 
Regression 

96.4%  
[96.1-96.8]% 

98.5%  
[98.0-98.8]% 

65.0%  
[59.3-66.7]% 

99.6%  
[99.2-100]% 

3.0%  
[2.7-4.2]% 

6.2% 
 [0.0-12.5]% 

Neural 
Network 

96.4% 
 [96.1-97.8]% 

 
98.8%  
[98.0-99.3]% 

63.6%  
[59.3-75.0]% 

99.6%  
[99.6-100]% 

3.0%  
[1.9-4.2]% 

6.2%  
[0.0-6.2]% 

 

B) 

Stage 2 Accuracy AUC PPV NPV FPR FNR 
Training 

Logistic 
Regression 

91.4%  
[91.2-91.5]% 

97.2%  
[97.0-97.3]% 

89.8%  
[89.6-90.0]% 

93.4%  
[93.3-93.5]% 

13.3%  
[13.1-13.8]% 

4.9%  
[4.9-5.0]% 

Neural 
Network 

91.7%  
[91.4-91.8]% 

97.4%  
[97.3-97.4]% 

90.4%  
[90.0-90.7]% 

93.4%  
[93.4-93.5]% 

12.4%  
[12.0-13.1]% 

5.0%  
[4.9-5.0]% 

Validation 

Logistic 
Regression 

88.6%  
[88.2-90.1]% 

96.1%  
[95.5-96.7]% 

86.1%  
[85.2-88.1]% 

92.4%  
[92.0-92.9]% 

19.7%  
[15.7-21.1]% 

5.4%  
[4.7-5.4]% 

Neural 
Network 

 
90.1%  
[89.4-90.9]% 

 
96.0%  
[95.6-97.2]% 

88.6%  
[87.6-89.7]% 

92.4%  
[92.2-92.5]% 

15.7%  
[13.9-17.5]% 

5.4%  
[5.4-5.4]% 
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Table 3: Predicted classifications of MIS-C patients from external sites. Percentages are based 

on the total number of patients from each site that were not rejected by conformal prediction. 

 MIS-C Subjects Predicted As  

Site FC KD MIS-C Total 

CHARMS  3 (3.7%) 2 (2.5%) 76 (93.8%) 81 

Boston Children’s Hospital  2 (4.1%) 0 (0%) 47 (95.9%) 49 

Children’s National Hospital  3 (7.5%) 1 (2.5%) 36 (90%) 40 
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Supplementary Information 

Supplementary Figure 1: Stage 1 MIS-C risk scores for UCSD (A) KD patients with aneurysms 

(n=164) and (B) MIS-C patients with reduced ejection fraction (n=20) in the training and test 

set. Coronary artery aneurysms were defined as a maximum Z score (internal diameter 

normalized for body surface area) for the right and left anterior descending coronary arteries > 

2.5. Reduced ejection fraction in MIS-C patients was defined as a left ventricular ejection 

fraction <55%. Patients with risk scores greater than the threshold (0.36, denoted by a red line) 

were classified as MIS-C. In the KD cohort, 120/126 patients in the training set and 34/38 

individuals in the test set were classified correctly as Not MIS-C. In the MIS-C cohort, 16/16 

individuals in the training set and 3/4 individuals in the test set were classified correctly as MIS-

C. 
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Supplementary Figure 2: MIS-C risk scores for the FC and KD patients in the training cohort

with at maximum 1 missing value. The 95th percentile for each cohort is denoted by a vertical red

line. Random samples were taken from the group of FC and KD patients with MIS-C risk scores

below the 95th percentile to create the conformal trust sets. 

Supplementary Figure 3: (A) Albumin and (B) sodium distributions from MIS-C patients in the

training set (Train) compared to Children’s National Hospital (CNH).  
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Supplementary Figure 4: SHAP force plots from a (A) correctly classified MIS-C patient (MIS-C 

risk score of 0.99) and (B) incorrectly classified MIS-C patient (MIS-C risk score of 0.l4). Red 

indicates a feature has a positive contribution to the risk score and blue indicates the opposite. 

Values for the most important features to each patient’s risk score are listed at the bottom of the 

plot. 
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Supplementary Figure 5: (A) User interface of the web-based calculator with values from a 

correctly classified MIS-C patient. Users enter the feature values, (B) predict risk scores, and (C) 

extract the important features contributing to the MIS-C risk score by pressing the “Predict” 

and “Feature Importance” buttons respectively. Other examples include risk scores for (D) a 

correctly classified KD patient, (E) a correctly classified FC patient, (F) a false negative patient 

(MIS-C classified as KD), (G) a false positive patient (KD classified as MIS-C), and (H) a 

patient rejected by the conformal prediction framework due to too many missing values. 
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Supplementary Table 1: Weighted F1 scores for missingness and risk score percentiles used to 

find the optimal combination for conformal prediction. The lowest percentile excluded (75th 

percentile) was determined based on whether the included samples were greater than 200 for 

both the FC and KD cohort. 0.29% of samples had > 5 missing values. 

 

Percentile 
Excluded 

Exclude 
data with > 
1 missing 
value 

Exclude data 
with > 2 
missing 
values 

Exclude data 
with > 3 
missing 
values 

Exclude data 
with > 4 
missing 
values 

Exclude data 
with > 5 
missing values 

95 - 100 0.874 0.872 0.871 0.871 0.871 

90 - 100 0.873 0.872 0.871 0.871 0.871 

85 - 100 0.873 0.872 0.871 0.871 0.871 

80 - 100 0.874 0.872 0.871 0.871 0.871 

75 - 100 0.874 0.873 0.872 0.871 0.871 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.07.21268280doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.21268280


43 

 

Supplementary Table 2. Number of subjects with missing data. Bolded features are features 

included in the model. LN: lymph nodes, LV: left ventricle, WBC: white blood cell count, Polys: 

polymorphonuclears or neutrophils, ANC: absolute neutrophil count, ABC: absolute band count, 

ALC: absolute lymphocyte count, ZHgb: hemoglobin concentration normalized for age, PLT: 

platelet count, ESR: erythrocyte sedimentation rate, CRP: C-reactive protein, ALT: Alanine 

aminotransferase, GGT: gamma-glutamyltransferase 

  
MIS-C 
(n=131) 

Kawasaki 
disease 
(n=775) 

Febrile 
control 
(n=673) 

Age 0 0 0 

Male 1 0 0 
Ethnicity 0 0 0 
Median Zmax 2 0 673 
Lowest LV Ejection Fraction 2 5 673 
Illness day of Sample 
collection 0 0 0 

Automated differential 0 0 0 
Clinical Sign 

   
Rash 0 0 0 
Red Eyes 0 0 0 
Oral Changes 0 0 0 
Enlarged cervical LN 0 0 0 

Extremity Changes 0 0 0 

Laboratory data 
   

WBC 0 0 0 
Polys 0 0 1 
Bands 29 92 111 
Lymphocytes 0 0 1 
Atypycal lymphocytes 69 134 114 
Monocytes 1 0 1 

Eosinophil 0 10 7 

ANC 0 0 1 
ABC 29 92 111 
ALC 0 0 1 
ZHgb 0 0 0 
PLT 0 1 2 
ESR 10 12 31 
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CRP 1 6 19 
ALT 1 5 43 
GGT 66 14 71 

Albumin 2 22 56 
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Supplementary Table 3. List of diagnoses for febrile children (FC). Subjects with bacterial 

infection included children with a positive culture from an otherwise sterile site, culture-proven 

bacterial enteritis, scarlet fever and toxic shock with appropriate supporting cultures and 

serology, and cervical lymphadenitis that responded to antibiotic therapy. Subjects with viral 

infection included children with PCR-proven specific viral diagnoses or children with “viral 

syndrome” defined as a self-limited illness that resolved without treatment and without apparent 

sequelae. All FC had fever for at least 3 days and at least one clinical criteria for KD. 

Diagnosis n % 

Bacterial infection  85 12.6 

Viral infection  548 81.4 
Autoimmune or auto-
inflammatory syndrome  14 2.1 

Allergic reaction  11 1.6 

Unspecified cervical adenitis  6 0.9 

Mycoplasma 4 0.6 
Unknown inflammatory 
condition 5 0.7 
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Supplementary Table 4: Predicted classifications of MIS-C patients from the CHARMS Study 

Group by site number. 

 MIS-C Subjects Predicted As   

Site FC KD MISC Rejected Total 

2 1 0 1 0 2 

3 1 1 13 1 16 

12 0 0 8 0 8 

15 0 0 2 0 2 

22 0 0 5 0 5 

23 0 0 1 0 1 

27 0 0 1 0 1 

31 0 0 6 0 6 

33 1 0 10 0 11 

34 0 0 3 0 4 

35 0 0 9 0 9 

37 1 0 6 0 7 

39 0 0 8 1 9 

40 0 0 2 0 2 
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