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early prediction of preeclampsia (first

16 weeks of pregnancy) and over

gestation by analyzing six omics datasets

from a longitudinal cohort of pregnant

women. If further validated, our findings

could lead to a simple prediction test for

use in both developed and developing

parts of the world.
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THE BIGGER PICTURE TheWorld Health Organization estimates that more than 800 women worldwide die
from pregnancy-related causes every day. One of the main causes is a hypertensive disorder, preeclamp-
sia, for which the only treatment is to deliver, often too early. Preeclampsia affects 3%–5%of pregnancies in
the United States and up to 8% globally. Machine-learning analyses of high-dimensional multiomics data
could potentially capture complex dynamics involved in the preeclampsia pathogenesis. We developed
machine-learningmodels for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gesta-
tion by analyzing six omics datasets from a longitudinal cohort of pregnant women. A prediction model us-
ing nine urine metabolites had high accuracy and was validated on an independent cohort. While encour-
aging, our results need to be validated on a larger cohort. If generalizable, our findings could lead to a simple
prediction test for use in both developed and developing parts of the world.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear. We developed
machine-learning models for early prediction of preeclampsia (first 16 weeks of pregnancy) and over gesta-
tion by analyzing six omics datasets from a longitudinal cohort of pregnant women. For early pregnancy, a
predictionmodel using nine urinemetabolites had the highest accuracy andwas validated on an independent
cohort (area under the receiver-operating characteristic curve [AUC] = 0.88, 95% confidence interval [CI]
[0.76, 0.99] cross-validated; AUC = 0.83, 95% CI [0.62,1] validated). Univariate analysis demonstrated
statistical significance of identified metabolites. An integrated multiomics model further improved accuracy
(AUC = 0.94). Several biological pathways were identified including tryptophan, caffeine, and arachidonic
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acid metabolisms. Integration with immune cytometry data suggested novel associations between immune
and proteomic dynamics. While further validation in a larger population is necessary, these encouraging re-
sults can serve as a basis for a simple, early diagnostic test for preeclampsia.
INTRODUCTION

The World Health Organization estimates that more than 800

women worldwide die from pregnancy-related causes every

day, with the highest rates of maternal mortality and morbidity

in low-income countries.1 One of the main causes is a hyperten-

sive disorder of pregnancy, preeclampsia, for which the only

treatment is to deliver, often too early. Preeclampsia affects

3%–5% of pregnancies in the United States and up to 8% of

all pregnancies globally,1 and accounts for 10%–15% of

maternal deaths2 and 15%–20% of preterm births.3

The pathophysiology of preeclampsia is complex and is

thought to be caused in part by abnormal placentation as well

as a woman’s genetic and immunologic predisposition.4 It is

believed that abnormal placentation leads to a maternal inflam-

matory response.4 Placental ischemia, oxidative stress, and

the presence of a maternal angiogenic imbalance are all charac-

teristics of preeclampsia,5,6 leading to endothelial and end-or-

gan damage, and in some cases to stroke and even death.

Specific biological processes involved in the development

of preeclampsia are not yet completely understood. Early pre-

diction of preeclampsia has remained a clinical challenge,

owing to incompletely understood causes, various risk factors,

and likely multiple pathogenic phenotypes of preeclampsia.7,8

The recent availability of high-throughput omics (e.g., genome,

transcriptome, proteome, and metabolome) assays, where

each can be performed on small sample volumes, has enabled

joint analyses of the high-dimensional multidomain or ‘‘multio-

mics’’ data measured from the same biological sample.4,9,10

An integrated analysis may capture complex dynamics

involved in the preeclampsia which could ultimately lead to

novel therapeutic interventions. Furthermore, applying ma-

chine-learning methods capable of extracting the most predic-

tive features from high-dimensional multiomics data could

lead to more accurate predictive models, discovery of bio-

markers, and improved early detection of women at risk for

developing preeclampsia.

In this study, we performed a multiomics analysis of the tran-

scriptome, proteome, metabolome, lipidome, and microbiome

from a coordinated set of biospecimens collected longitudinally

from normotensive and preeclamptic pregnant women; we then

integrated immune system mass spectrometry features that

were available for a subset of the women; and finally, we com-

bined the multiomics data with the available clinical/demo-

graphics data and performed a joint analysis. Our goals were

to: (1) build an early prediction model of preeclampsia; (2)

develop a simple and interpretable predictive model based on

a small number of biomarkers that can lead to the development

of a diagnostic test; (3) compare prediction capabilities of

different omics sets; (4) build an integrated multiomics predictive

model of preeclampsia to identify a signature of preeclampsia;

and (5) gain insights into pathways involved in the pathogenesis

of preeclampsia.
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RESULTS

Study design and multiomics data collection
Our prospective study included 33 women in the discovery

cohort (17 preeclamptic, 16 normotensive) and 16 women in

the validation cohort (12 preeclamptic, 4 normotensive) (Fig-

ure 1A). The validation cohort was used to validate the metabo-

lomics results. Among the preeclamptic women in the discovery

cohort, severe andmild preeclampsia were observed in 10 and 7

women, respectively; early- and late-onset preeclampsia were

observed in 5 and 12 women, respectively (Table S2). Maternal

characteristics, demographics, and gestational ages at delivery

are shown in Table S1. Both in discovery and validation cohorts

there was a higher prevalence of chronic hypertension, high

body mass index (BMI), and twin pregnancies—all known risks

for preeclampsia—among preeclamptic compared with normo-

tensive women (Table S1).

Blood, urine, and vaginal swabs were collected longitudinally

at two or three time points during pregnancy: early, mid, and

late (Figure 1). Across the gestation, we found no significant dif-

ference in sampling time between preeclamptic and normoten-

sive groups (p > 0.74 first sample, p > 0.6 second sample, and

p > 0.3 third sample; Wilcoxon rank-sum test). These samples

were used for measurements of six omics assays: cell-free

RNA (cfRNA)/transcriptome (plasma), proteome (plasma), me-

tabolome (plasma and urine), lipidome (plasma), and micro-

biome (vaginal swab). In addition, immune-system-wide mass

cytometry measurements of single cells were obtained on a sub-

set of 19 women from the same cohorts (18 women from the dis-

covery cohort and one woman from the validation cohort). The

number of measurements differed markedly among omics data-

sets, with transcriptome containing the highest number of mea-

surements (Figure S1A). In contrast, the number of principal

components explaining 90% of the variance, which quantifies

the internal correlation of a dataset, exhibited a smaller differ-

ence among datasets (Figure S1B). Thus, although the amount

of data varied several orders of magnitude among datasets, their

numbers of principal components were much more similar.

Prediction of preeclampsia in early pregnancy
From a clinical perspective, early prediction of preeclampsia,

i.e., within the first 16 weeks of gestation, is of critical impor-

tance, as it would enable: early treatment of high-risk women

(e.g., with low-dose aspirin11); closer monitoring of high-risk

pregnancies; and the enrichment of preemptive interventional

studies in women at risk for developing preeclampsia.12 Identi-

fying a small number of specific biomarkers that are predictive

of preeclampsia early in pregnancy could ultimately facilitate

the development of a simple and affordable diagnostic test for

both high-income and low- and middle-income countries. To

this end, we developed an early prediction model for preeclamp-

sia using only samples collected from each omics dataset during

the first 16 weeks of pregnancy. To agnostically examine all the
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Figure 1. Overview of the study

(A) Two independent cohorts were analyzed using six different omics.

(B) Sample collection timeline for plasma in our discovery and validation cohorts. Circles indicate pre-delivery sample collection times, and inverted triangles

indicate delivery dates for individual women (one per horizontal line).
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measurements in our high-dimensional data, we used Elastic Net

(EN), a regularized regression machine-learning method (see

experimental procedures). EN was chosen for its ability to

extract, from high-dimensional data, a handful of the most pre-

dictive features that can predict an outcome with high accu-

racy.13 Performance was evaluated using the leave-one-out

cross-validation method. Comparison of predictors demon-

strated the highest performance of the urinemetabolome predic-

tive model (area under the receiver-operating characteristics

curve [AUC] = 0.88, 95% confidence interval [CI] [0.76, 0.99]) fol-

lowed by the proteome model (AUC = 0.87, 95% CI [0.75, 0.99])

and cfRNAmodels (AUC= 0.68, 95%CI [0.49, 0.87]) outperform-

ing models from other omics (Figure 2A). Top identified proteins

and genes are shown in Figure S7.

The heatmap of rank values of features selected by EN from all

omics is shown in Figure 2B. Hierarchical clustering was used to

separate preeclamptic from normotensive pregnancies.

We next focused on our top-performing model, which was

trained from the urine metabolome dataset and consisted of

nine metabolites, and evaluated its performance in the validation

cohort. The model validated maintaining high performance with
an AUC of 0.83 (95% CI [0.62, 1.0]) (Figure 3A), confirming iden-

tified metabolites (Figure 3B) as biomarkers of preeclampsia.

Furthermore, p values obtained using a separate univariate

analysis demonstrated the statistical significance of each of

the identified metabolites (Figure 3B). The metabolites identified

by EN as the biomarkers were dihydroxybenzoic acid, tetr-

adecadiencarnitine, adenine, dihydroxyphenylglycol O-sulfate,

methoxyhydroxyphenylethyleneglycol, and four uncharacterized

molecules (C23H39NO19, C26H32F2O7, C15H25N3O8S, C12H27Sn)

(Figure 3B).

Machine-learning modeling of preeclampsia over
gestation
We next analyzed longitudinal data that included all samples

taken during pregnancy (Figure 1) in order to capture the

changes that occur due to preeclampsia during pregnancy and

possibly gain insights into the development of preeclampsia.

As in the early pregnancy analysis, multivariate models of pre-

eclampsia were trained for each omics using EN (see experi-

mental procedures). To investigate whether a joint analysis of

different omics can offer further gains, predictions from separate
Patterns 3, 100655, December 9, 2022 3
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Figure 2. Prediction models in early pregnancy
Samples obtained in the first 16 weeks of pregnancy were used.

(A) Performance comparison of ENmodels derived from different omics in terms of the AUC. The integrated (stacked)model utilizing stacked regression exhibited

the highest accuracy (AUC = 0.94, 95% CI [0.86, 1]). Among omics sets the urine metabolomic model (AUC = 0.88, 95% CI [0.76, 0.99]) and plasma proteome

(AUC = 0.87, 95% CI of [0.75, 0.99]) performed best.

(B) Heatmap of ranked values of features identified by EN, perfectly distinguishing preeclamptic from normotensive women.
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omics models were integrated in a joint model using stacked

regression (see experimental procedures). The performance of

all models was evaluated using the leave-one-out cross-valida-

tion method. The integrated model exhibited the highest predic-

tion accuracy (AUC = 0.91, 95% CI [0.85, 0.97]), outperforming

predictions from each separate model in terms of the point esti-

mate (Figure 4A). EN models from the proteome and urine me-

tabolome exhibited high performance (AUC = 0.89, 95% CI

[0.83, 0.95]; AUC = 0.87, 95% CI [0.80, 0.94], respectively) out-

performing other omics data, the same trend we observed in

the early pregnancy performance. As before, the urine metabo-

lite model was validated in an independent cohort, with an

AUC of 0.87 (95% CI [0.76, 0.99]) (Figure 4B), confirming identi-

fied metabolites as true biomarkers of preeclampsia.

Top urine metabolites included adenine, isovalerylglutamic

acid, uric acid ribonucleoside, 1,5-anhydroglucitol, dehydroepi-

androsterone, sialyllactose, Nε-acetyl-L-lysine, and nonanoyl-

carnitine. p values obtained using a separate univariate analysis

show statistical significance of each of the identified metabolites

(Figure 4C). One of the identified metabolites, uric acid ribonu-

cleoside, is an end product in the same pathway as uric acid,

whose increased concentration is typical of preeclampsia.14 As

an end product, uric acid ribonucleoside is more likely to be a

sensitive biomarker. Interestingly, the uric acid levels in our

data did not discriminate between controls and preeclamptic

patients.

A model using top-scoring plasma proteins achieved an AUC

of 0.83 (95% CI [0.73, 0.92]) (Figure 4A). The most predictive
4 Patterns 3, 100655, December 9, 2022
plasma proteins selected by EN included leptin (LEP), vasc-

ular endothelial growth factor A (VEGFA), L-selectin (SELL),

E-selectin (SELE), interleukin-24 (IL-24), IL-22, tyrosine-protein

kinase transmembrane receptor (ROR1), C-X-C motif chemo-

kine ligand 10 (CXCL10), and SPARC-like 1 (SPARCL1) (Fig-

ure 4D), thereby confirming some of the established or indicated

proteins associated with preeclampsia15–17 (see Table S4 and

discussion for further details), as well as establishing new asso-

ciations. Also in this case, p values obtained using univariate

analysis show that all proteins chosen by EN are statistically sig-

nificant (Figure 4D).

We point out that, as expected, EN models varied slightly

owing to variability of the chosen training set in each leave-

one-out cross-validation step18 and therefore, the features cho-

sen by EN varied slightly across cross-validations. We recorded

the frequency of occurrence for every feature across all cross-

validation steps (shown for the proteome model in Figure S2).

Having high frequency of occurrence indicates that the feature

is relevant for all or a majority of samples, i.e., it is more stable.18

Because both in discovery and validation cohorts the pre-

valence of known preeclampsia risks including chronic hy-

pertension, high BMI, and twin pregnancies was higher among

preeclamptic compared with normotensive women (Table S1),

we next investigated whether our multiomics model captures

mostly these differences. We calculated Spearman correlation

between prediction model scores and clinical variables (Fig-

ure S3). The first-trimester blood pressure was also included in

the analysis. The highest correlation between the model and
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Figure 3. Urine metabolome prediction model using nine metabolites sampled early in gestation validates on the validation cohort

Samples obtained in the first 16 weeks of pregnancy are used.

(A) AUC = 0.83, 95% CI [0.62, 1] and prediction values (scores) obtained by EN for preeclamptic (PE) and normotensive women.

(B) Metabolites identified by EN as biomarkers of preeclampsia. y axis shows the value in early pregnancy stratified by normotensive (gray) and preeclamptic (light

blue) pregnancies. p values obtained using Wilcoxon signed-rank univariate analysis show statistical significance of each protein (*p % 0.05, **p % 0.01, ***p

% 0.001).
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clinical variables, and the only one that was statistically signifi-

cant, was found to be between BMI and the model

(p < 0.0086). However, even in this case the BMI did not fully

correlate with the model (Spearman correlation = 0.63) confirm-

ing that our model does not just capture differences in BMI to

distinguish between preeclamptic and normotensive women.

We observed a low correlation between the model (row labeled

‘‘prediction’’ in Figure S3) with other clinical variables, indicating

that the omics model is not just describing differences in the

available clinical/demographic characteristics of women but is

capturing biological differences.

The correlation network of all features chosen by EN models

for each of the omics sets was plotted using t-distributed sto-

chastic neighbor embedding (t-SNE), revealing multiomics inter-

action of analytes associated with preeclampsia (Figure 5).

Edges between features indicate a Spearman correlation

>0.55. As expected, features from one omics set tend to group

together, with higher correlation among them. In addition, we

observe that correlation exists among different omics datasets.
Exploiting these correlations may be a plausible explanation as

to why the integrated prediction model outperforms individual

models as shown in Figure 3. Pathway enrichment analysis re-

vealed that three protein clusters observed in the plot were asso-

ciated with different pathways: (1) pathways related to immune

response (bottom cluster); (2) pathways related to neurodevel-

opment (middle cluster); and; (3) pathways related to intracellular

signal transduction (top cluster) (Figure 5). Threemetabolic path-

ways were enriched: (1) steroid biosynthesis; (2) tryptophan

metabolism, as in the case of univariate analysis (Figure 7); and

(3) b-oxidation of very long chain fatty acids whose role in pre-

eclampsia has been previously observed.

Finally, we compared themost predictive features as identified

by EN in early pregnancy versus during gestation in terms of their

significance (�log10(p values)). Plasma proteins are shown in

Figure S5A and urine metabolites in Figure S5B. We observe

that a large number of proteins identified by EN stay statistically

significant in both cases, including LEP, SELL, CCL23,

ROR1, IL1RAP, SELL, SELE, VEGFA, IGFBP1, and SPARCL1
Patterns 3, 100655, December 9, 2022 5
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Figure 4. An integrated multiomics machine model outperforms single omics models for preeclampsia

(A) Cross-validated performance of machine-learning models in terms of the AUC is shown on the y axis. Each model was obtained using all available samples

over gestation. The integrated (stacked) model utilizing stacked regression exhibited the highest accuracy (AUC = 0.91, 95%CI [0.85, 0.97]). Both proteome and

metabolome (urine) had high prediction performance (AUC = 0.89, 95% CI [0.83, 0.95] proteome; AUC = 0.87, 95% CI [0.80, 0.94] urine metabolome).

(B) Urine metabolome prediction model using ten metabolites sampled over gestation validates on the validation cohort. AUC = 0.874, 95% CI [0.76, 0.99], and

prediction values (scores) obtained by EN for normotensive and preeclamptic (PE) women.

(C) Metabolites identified by EN as biomarkers of preeclampsia over gestation. y axis shows values stratified by normotensive (gray) and preeclamptic (light blue)

pregnancies. p values obtained using linear mixed-effects univariate analysis show statistical significance of each metabolite (p < 0.05).

(D) Proteins identified by EN as biomarkers of preeclampsia over gestation. y axis shows a protein value stratified by normotensive (gray) and preeclamptic (light

blue) pregnancies. p values obtained using linear mixed-effects univariate analysis show statistical significance of each metabolite (p < 0.05).
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Figure 5. Visualization of predictive features

of the transcriptome (yellow), proteome (or-

ange), urine metabolome (dark blue), and

plasma metabolome (light blue)

Features obtained using all available samples over

gestation. Vertices represent features selected by

EN laid out using t-SNE. Edges are drawn between

features with Spearman correlation >0.55 clearly

illustrating high correlations between different omics

sets. Size of each node is proportional to the

frequency at which it was chosen in prediction

models during cross-validation. High frequency of

occurrence indicates that a feature is relevant for all

or majority of patients, resulting in a more sta-

ble model.
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(Figure S4A). Some of the proteins are significant over gestation

but not early in pregnancy (e.g., APOB) possibly due to a smaller

number of samples. A similar trend is observed for urine metab-

olites (Figure S4B). Also noteworthy is that because EN uses

sparsity, a feature that is associated with preeclampsia may be

excluded from the final model if that model already includes

another feature highly correlated with the original one. This is

especially true in scenarios with a large number of features and

high-dimensional regime such as in our study. This effect is illus-

trated in Figure S5, showing the difference in chosen features for

prediction models over gestation and in early pregnancy.

Single-cell characterization of the immune system
Preeclampsia is strongly associated with inflammation and aber-

rant maternal immune system adaptations during pregnancy.19

To assess immunity—which is complementary to pathways

covered by proteins and metabolites—and connect differential

abundances of plasma proteins and urine metabolites in pre-

eclamptic pregnancies to biological changes, immune-system-

wide mass cytometry measurements of single cells obtained in

a subset of the same patient cohort were integrated with our

plasma proteome and urine metabolome prediction models, as

these two models had the best accuracy. Immune cell dynamics

between first- and second-trimester blood samples obtained

from high-dimensional mass cytometry were previously used

to develop a prediction model of preeclampsia.20 We found

that seven (out of eight) of the immune features reported by

Han et al.20 correlated highly with the prediction based on our in-

tegrated algorithm (Spearman correlation p < 0.05) (Figure 6A,

highlighted in orange), confirming the predictive value of immune

cell features as well as plasma proteins and urinemetabolites. To

investigate whether this correlation between predictive features

was biologically meaningful, we focused on the correlations of

feature behavior between the eight earlier reported predictive

immune features (Figure 6A) and the top 12 most informative

plasma proteome features (Figure 4D) across pregnancy

(Figure 6B). LEP and SELL levels were particularly strongly cor-

related with the eight immune cell features (Figure 6B). Interest-
ingly, basal pSTAT5 signaling in T helper 1

(Th1) cells (CD4+Tbet+), the top immune

feature to distinguish control from pre-

eclamptic pregnancies,20 correlated with

LEP levels in both control and preeclamptic
patients. Uniquely in preeclamptic cases, LEP levels were corre-

lated with basal pSTAT1 signaling in intermediate myeloid cells

(intMCs) (Spearman correlation p = 0.002) and basal STAT5

signaling in myeloid dendritic cells (mDCs) (Spearman correla-

tion p = 0.01). Moreover, SELL levels were uniquely correlated

with immune features in preeclamptic pregnancies and not

with controls, i.e., correlated with basal pNFkB and pSTAT1

signaling in cMCs, basal pSTAT5 signaling in Th1 cells and

mDCs, and basal pMAPKAPK2 signaling in naive CD4 T cells.

Preeclamptic pregnancies were not characterized by—in other

words, had potentially lost—concerted proteome/immune

behavior, which was prominently observed in healthy preg-

nancies, i.e., correlations of leptin with basal pP38 signaling in

T regulatory (Treg) and T cell receptor gd (TCRgd) cells. These

correlations exemplify the biological connection between

responsiveness of immune cells and its plasma environment.

Relationship between clinical data and omics
measurements
Clinical and demographics data contain maternal characteristics

known to be associated with the risk of preeclampsia, e.g.,

preexisting hypertension, race, BMI, height, and gravida. We

combined ten variables that were available in this dataset

(Table S1) with the most predictive sets, (1) plasma proteome

and (2) urine metabolome models, to better understand their

mutual relationship. The ten clinical variables were included

together with the top ten omics features, all combined in the sin-

gle cross-validation step. Inclusion of clinical and demographics

data improved the performance when combined with both the

plasma proteome and the urine metabolome (urine metabolome

AUC = 0.96, 95% CI [0.92, 0.99]; proteome AUC = 0.91, 95% CI

[0.85, 0.97]) (Figure S6A). The most predictive clinical variables

included maternal age, BMI, height, and preexisting hyperten-

sion. We observed several significant correlations (Spearman

correlation p < 0.05) between clinical variables and plasma pro-

teins/urine metabolites that were present only among pre-

eclamptic women. These included: leptin with maternal BMI/

weight, in agreement with existing literature;21 CCL23 with
Patterns 3, 100655, December 9, 2022 7



A B

Figure 6. Correlation between predictive immune features and multiomics model

(A) Previously identified predictive immune features strongly correlate with themultiomics predictive model. Visualization shows features most correlated with the

prediction of the stacked model. Features shown in orange are the seven most predictive immunome features that also highly correlate with the multiomics

predictive model. Size of each node is proportional to the �log10(p value) of Spearman correlation.

(B) Comparison of p value of correlation for the top immune and top proteome features. Each node is a pair comprising an immune and a proteome feature.
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height; SELL with gravida (Figure S6B); maternal age with

adenine—previously observed22—and maternal age with isova-

lerylglutamic acid (Figure S6C).

In addition, to compare the above performance with the per-

formance of a baseline model, we trained EN only on the avail-

able maternal and pregnancy characteristics. The obtained

model still had a good accuracy, AUC = 0.85, 95% CI [0.66,

1.0], but the performance, as expected, was lower compared

with the combined model. The most predictive variables in the

model were maternal hypertension, BMI, race, age, and number

of babies in the current pregnancy. This is in line with results in

our previous work that developed a machine-learning model

for early prediction of preeclampsia from electronic health record

data.23

Univariate analysis of preeclampsia pathogenesis from
multiomics measurements
We next present univariate analysis with the Benjamini-

Hochberg procedure that identifies all features significantly

associated with preeclampsia. We further used these features

to perform pathway enrichment analysis.

Over the course of pregnancy

Changes over gestation of 1,215 metabolic features among

8,718 were significantly associated with preeclampsia outcome

(false discovery rate [FDR] < 0.05, linear mixed-effects [LME]

model with Benjamini-Hochberg procedure). Pathway enrich-
8 Patterns 3, 100655, December 9, 2022
ment analysis using these urine metabolites identified the

following pathways (p < 0.05) (Figure 7A): (1) tryptophan meta-

bolism; (2) caffeine metabolism; (3) tyrosine metabolism; (4)

steroid hormone biosynthesis; (5) pentose and glucuronate inter-

conversions; (6) linoleic acid metabolism. The steroid hormone

biosynthesis pathway plays an important role in pregnancy pro-

gression.24 Both the steroid hormone biosynthesis pathway and

the caffeine metabolism pathways and caffeine metabolites

have previously been associated with pregnancy,25,26 and

tryptophan metabolism with preeclampsia.27 Metabolites in the

steroid hormone biosynthesis pathway and in the caffeine meta-

bolism pathway present in the data with high level of significance

are respectively shown in Figures S8C and S8D. The comparison

between enrichment factors and statistical significance of path-

ways enriched over gestation versus in early pregnancy is shown

in Figure S22.

Among 1,305 proteins, 437 had changes that were signifi-

cantly associated with preeclampsia outcome over gestation

(FDR < 0.05, LME model with Benjamini-Hochberg procedure).

The top 64 proteins at significance level p< 5310� 4 (LMEmodel)

showed markedly different values between normotensive and

preeclamptic women (Figure S9). Top proteins included IL-1 re-

ceptor accessory protein (IL1RAP) and SELL, both known to play

a role in the immune response.28 Enriched pathways grouped

into ten biological processes, the most prevalent being positive

regulation of cellular processes (including biological, cellular,
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Figure 7. Identified enriched pathways from urine metabolome urine over gestation and in early pregnancy

(A) Pathway enrichment analysis over gestation using metabolites from urine that were significant (FDR < 0.05, Wilcoxon signed-rank test with Benjamini-

Hochberg procedure). Pathways shown above the dotted line were significant (p < 0.05).

(B) Pathway enrichment analysis for early pregnancy using metabolites from urine that were significant (FDR < 0.05, linear mixed-effects model with Benjamini-

Hochberg procedure). The color and the size of a circle are proportional to the �log(p) and pathway impact value, respectively, where p denotes a p value.

ll
OPEN ACCESSArticle
protein metabolic, immune system, and apoptotic processes

among others) (46.4%) (Figure S10). In the cfRNA set, 306 fea-

tures were significantly associated with preeclampsia outcome

over gestation (FDR < 0.05, LME model with Benjamini-

Hochberg procedure). Enriched pathways grouped into 11 bio-

logical processes, the most prevalent being RNA splicing

(37.3%) (Figure S11). Top features included YOD1 (known to

be related to developmental processes29), BIRC2, CEP63, and

LCP1 (also previously implicated with preeclampsia30). A

network of top proteome, transcriptome, and urine and plasma

metabolome features is shown in Figure S12.

Early pregnancy

In early pregnancy, 497 out of 8,718 urinemetabolic features had

changes significantly associated with preeclampsia when

compared with normotensive controls (FDR < 0.05, Wilcoxon

signed-rank test with Benjamini-Hochberg procedure). Pathway

enrichment analysis on these urine metabolites identified the

following pathways (p < 0.05) (Figure 7B): (1) tyrosine meta-

bolism; (2) lysine degradation; (3) tryptophan metabolism; (4)

phenylalanine metabolism; (5) steroid hormone biosynthesis;

(6) arachidonic acid metabolism; (7) phenylalanine, tyrosine,

and tryptophan biosynthesis; (8) aminoacyl-tRNA biosynthesis.

Arachidonic acid metabolism is a central regulator of the inflam-

matory response and has a known role in the pathogenesis of

preeclampsia.31 Similarly, tryptophan metabolism has an impor-

tant role in pregnancy, providing increased protein synthesis by

the mother, fetal growth development; and serotonin for

signaling pathways.32 Individual metabolites from these two

pathways are shown in Figures S8A and S8B.

In the proteome set containing 1,305 proteins, three pro-

teins—LEP, CCL23, and FAM3D—were significantly associated
with preeclampsia outcome (FDR < 0.05, Wilcoxon signed-rank

test with Benjamini-Hochberg procedure) identifying one signif-

icantly enriched pathway, negative regulation of glucagon secre-

tion (Fisher’s exact test with Benjamini-Hochberg procedure,

FDR < 0.05). The reason we did not adjust for covariates, specif-

ically BMI—the only covariate with statistically significant corre-

lation with the model predictions (Figure S3)—is that we wanted

to capture the underlying biology including themechanism under

which the existing factors such as BMI are associated with pre-

eclampsia. By adjusting for BMI, we would potentially remove

pathways otherwise enriched and involved in preeclampsia.

Outlier analysis

We observed that a few women in our cohort were consistently

misclassified by our prediction algorithm (Figure S13). A few

normotensive control women resembled those with preeclamp-

sia on a molecular level in some of the top predictive features

across omics sets. Vice versa, there were some preeclamptic

women whose top molecular features more closely resembled

those of controls. Reexamination of the clinical charts revealed

that one of the preeclamptic women, while clearly hypertensive,

had proteinuria in the context of gross hematuria, obscuring

whether proteinuria was related to preeclampsia. Therefore,

she may have been misdiagnosed with preeclampsia but rather

only had gestational hypertension. This highlights that the pre-

dictive model can pick up discrepancies within the clinical chart.

For the other women whose clinical diagnosis held, this implies

that their phenotypic features that classified them in either

normotensive or preeclampsia group did not match their molec-

ular phenotypes. Of interest, one preeclamptic woman, which

the prediction classified as control, developed HELLP syndrome

very late in gestation at 41 + 3 weeks. Therefore, if she had
Patterns 3, 100655, December 9, 2022 9
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delivered closer to the due date shewould have been considered

a control. Thus, if others in the control group have a similar mo-

lecular phenotype, this may represent a late-onset preeclampsia

related to placental aging in the post-term period.

DISCUSSION

Recent omics studies of preeclampsia typically included up to

two omics datasets.10,33,34 Our study presents an integrated

analysis of six high-throughput omics datasets obtained on the

same biological sample, containing more than 50,000 measure-

ments per sample. This multiomics analysis enabled uniform

comparison of omics sets and revealed improved predictive abil-

ity for preeclampsia status relative to individual biological modal-

ities, and indications of biological processes associated with the

disease across multiple modalities. The first part of the analysis

focused on early prediction of preeclampsia with the goal of

comparing the six omics and identifying the best biomarkers.

We then used amultiomics approach to integrate six omics data-

sets into one integrated (stacked) prediction model. The multio-

mics analysis demonstrated that the plasma protein and urine

metabolome had the highest accuracy, both early in pregnancy

(Figure 2A) and over gestation (Figure 4A). For that reason, we

followed this with a more targeted analysis of plasma proteins

and urine metabolites that were identified as having the highest

accuracy. Ultimately, our goal is to develop a simple diagnostic

test with high accuracy, and these two omics datasets were

identified as most promising from our analysis.

One of the main strengths of our study is that, in our cohort,

biological samples were not only collected longitudinally from

each woman, but each individual sample was also simulta-

neously measured for proteome, transcriptome, metabolome,

lipidome, and vaginal swab for microbiome, thereby providing

a unique opportunity to systematically study changes attribut-

able to preeclampsia over gestation, and compare the capability

of each of these omics sets to predict and characterize pre-

eclampsia. All 50,000measurements were used in the prediction

algorithm to agnostically identify the best biomarkers of

preeclampsia.

Among our six omics, urine metabolomic and plasma proteo-

mic datasets demonstrated the highest prediction accuracies,

both over gestation and early in pregnancy. A prediction model

using a small number of urine metabolites provided high accu-

racy over gestation (AUC = 0.88, cross-validated) and early in

pregnancy (AUC = 0.875, cross-validated). The prediction model

was validated on an independent cohort (AUC = 0.83 in early

pregnancy; AUC = 0.87 over gestation), confirming identified

metabolites as true biomarkers. Univariate analysis demon-

strated the statistical significance of these biomarkers.

The EN prediction model with plasma proteins achieved AUC

of 0.83 over gestation and of 0.88 in early pregnancy. Several of

the proteins identified by our model as the most predictive have

previously been well established as biomarkers of preeclampsia

(VEGFA,15 LEP,16 SELL,35 CXCL10,36 ROR1,37 and IL1RAP38),

further validating our results. Some of the identified proteins

have been previously indicated in individual studies but have

not yet been confirmed (IL-24,17 HIPK3,39 and SPARCL140),

and some have been identified for the first time (IL-22). While

these biomarkers were previously examined in typically more
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targeted studies examining a single or small group of these pro-

teins (e.g., IL-2417), our agnostic approach demonstrates that

put together, their combinedmeasurements result in an accurate

model of preeclampsia. One of identified proteins in our model

was VEGFA. Reduced levels of VEGFA have previously been

described in preeclamptic pregnancies, owing to increased

levels of placental soluble FMS-like tyrosine kinase-1 (sFLT-1),

which validate our study.15,41,42 Among the other known bio-

markers of preeclampsia—sFLT-1, pregnancy-associated pla-

sma protein A (PAPP-A), placental growth factor (PIGF), and

endoglin (ENG)—PIGF and PAPP-A were indeed significantly

different between normotensive and preeclamptic women (Fig-

ure S15). The fact that ENG and sFLT-1 were not significant

may be in part due to the small size of our cohort. In addition,

we point out that sFLT-1 is a good predictor of preeclampsia

later in pregnancy and once suggestive clinical features are

observed,43 whereas the majority of our samples were taken

before that point. Clinically, it is the sFLT-1/PIGF ratio that is

used as a biomarker and not individual levels (Figure S14B).

Throughout pregnancy PIGF levels are increasing until sFLT-1

levels start to increase, which is consistent with what is observed

in our data (Figure S14) and suggests a variety of new hypothe-

ses for testing. We did not include PP13 (galectin13) measure-

ments, another known biomarker of preeclampsia.

Preeclampsia is accompanied by a dysregulated maternal im-

mune adaptation to pregnancy, which is already detectable in

early pregnancy.19,20 This aberrant signature was previously

identified in women who developed preeclampsia later.20 Here

we report that the intricate functional capacities of immune cells

are coevolving with their environment throughout the course of

pregnancy, showing that top informative immune feature levels

are highly correlated with top informative plasma proteins. This

interconnectedness supports both prediction approaches,

confirming their individual usefulness while complementing the

validity of each approach. The results highlight the known path-

ophysiology of preeclampsia and suggest novel associations

between immunological and proteomic dynamics. In preeclamp-

tic pregnancies, immune responses were uniquely correlated

with levels of LEP and SELL.

LEP, known to be elevated in the plasma of preeclamptic

women,16 is an immune regulatory hormone produced by adi-

pose tissue and the placenta.16,44 LEP activates the JAK/STAT

andMAPK pathways directly through binding to the leptin recep-

tor expressed on leukocytes, and thereby modulates both innate

and adaptive immune responses,45,46 including skewing of CD4

T cells toward Th1 polarization47 and inhibiting Treg prolifera-

tion.46 Accordingly, we observed that LEP levels in preeclamptic

and control pregnancies correlated with STAT and MAPK

pathway signaling both in innate and adaptive immune cells,

suggesting that dysregulated leptin levels in preeclamptic preg-

nancies might contribute to the aberrant immune signature

while, reciprocally, inflammation itself might enhance plasma

leptin levels.44,45 Moreover, while in healthy pregnancies LEP

levels correlated with p38 signaling in Treg and TCRgd, this

correlation was lost in preeclamptic pregnancies, suggesting

that regulation of immune tolerance might be disrupted in pre-

eclamptic pregnancies.

Furthermore, we reported decreased SELL levels in pre-

eclamptic pregnancies that correlated with basal pSTAT,
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pNFkB, and pMAPKAP2 signaling in innate (mDC and cMC) and

adaptive immune cells (Th1 and naive CD4 T cells). SELL is shed

from leukocytes during activation and migration, and soluble

L-selectin can be used as a surrogate marker for inflammation.48

Notably, a drop in soluble SELL levels is observed during

sepsis.49 Previous studies reported conflicting results for circu-

lating soluble SELL levels in preeclampsia,35,50,51 including low

soluble SELL levels at 20 weeks of gestation, prior to onset of

preeclampsia.50 Preeclampsia-associated enhanced ectodo-

main shedding of cell-adhesion molecules could be directly

linked to changes in signaling responses in circulating immune

cells by shedding-mediated activation of intracellular path-

ways.48 Alternatively, the correlation could reflect independent

inflammatory mechanisms, as decreased levels of circulating

SELL have been proposed to be due to its adsorption to luminal

vascular ligands, which are upregulated by an activated endo-

thelium, a feature of preeclampsia.6,50,52

The model from urine metabolites predicted preeclampsia

with highest accuracy. Enrichment analysis identified discrimi-

nant biological pathways associated with preeclampsia when

considering early and all time points. The steroid hormone

biosynthesis pathway was significant (p < 0.05) in both models

while arachidonic acid metabolism was significant in early

pregnancy. Arachidonic acid is a precursor to a myriad of bioac-

tive lipids including prostaglandins (PGs), prostacyclin, throm-

boxane, hydroperoxyeicosatetraenoic acid, leukotrienes, lipox-

ins, hypoxins, anandamide, and epoxyeicosatrienoic acids,

which play key roles in inflammatory, vascular, and coagulation

processes.53 As early as the 1960s the role of the eicosanoids

in preeclampsia pathogenesis was proposed, and by the

1970s evidence supported that an increase in thromboxane

(TXA2; produced by platelets) over prostacyclin (PGI2; produced

by endothelium) associated with preeclampsia.54 This is one of

the biological underpinnings for the use of low-dose aspirin for

the prevention of preeclampsia. Mills et al.55 reported longitudi-

nal measurements of the urinary metabolites of thromboxane

and PGI2 throughout gestation. Although they did not find a sig-

nificant increase in the urinary concentrations of TXA2, they did

find a significant decrease in PGI2 as early as 13–16 weeks of

gestation and a significant elevation in the ratio of thromboxane

to PGI2 as early as 17–20 weeks of gestation in women destined

to develop preeclampsia. While this PG imbalance is noted both

prior to and at the time of clinical presentation (after 20 weeks),

the fact that arachidonic acid metabolism was only observed

in early pregnancy may explain why clinical studies note that

low-dose aspirin initiation prior to 16 weeks is needed for signif-

icant prevention of preeclampsia.56

The tryptophan pathway was identified as highly assoc-

iated with preeclampsia over gestation (Figure 7). Indolea

mine-2,3-dioxygenase (IDO) is the first and rate-limiting enzyme

in this pathway producing kynurenine, which then is converted

into a number of bioactive metabolites. IDO is an intracellular

enzyme produced bymany cell types andwhile not secreted, im-

pacts neighboring cells by tryptophan depletion and production

of bioactive metabolites. The role of IDO in both normal and

abnormal pregnancies, including preeclampsia, has been

recently reviewed.57 IDO expression increases with pregnancy,

and tryptophan depletion in the placenta inhibits T cell-mediated

rejection of semi-allogeneic fetal tissues.58 Kynurenine is an
endogenous ligand that activates the aryl hydrocarbon receptor

(AhR).59 This activation skews the differentiation of T cells to

immunosuppressive Tregs rather than proinflammatory Th17

cells after exposure to transforming growth factor b.60,61

Notably, kynurenic acid and xanthurenic acid, two metabolites

of kynurenine, can also activate AhR signaling and may partici-

pate in immune regulation.62,63 Therefore, deficiency of IDO im-

pacts Treg development. Notably, IDO knockout mice, when

pregnant, develop a preeclampsia-like phenotype.64 The meta-

bolic signal related to tryptophan metabolism in the model over

gestation may be related to the immune signature of preeclamp-

sia, highlighting the importance of immune alterations occurring

in the later stages of preeclampsia. Caffeine metabolism was

also identified as highly associated with preeclampsia over

gestation. This pathway and caffeine metabolites have previ-

ously been associated with pregnancy.25,26

Models to predict preeclampsia early in pregnancy were pre-

viously based on maternal characteristics (demographics and

medical history), followed by addition of uterine artery Doppler

measurements and specific biomarkers.65–70 Levels of angio-

genic and/or antiangiogenic proteins (PlGF, sFlt-1, and ENG),

or their ratios, have been established as biomarkers with high

prediction accuracy later in pregnancy.15,41,71 More recently,

analysis of omics datasets have been successfully applied to

identify various biomarkers related to preeclampsia.10,33,72

Most of these studies were based on measurements from one

or at most two omics datasets, and often from samples taken

only at one time point during pregnancy. Here we show that clin-

ical and demographic characteristics (i.e., weight, height, race)

were complementary to omics measurements and improved

prediction models.

Another important problem would be to develop a more spe-

cific model to predict severe preeclampsia. Among existing

models for prediction of preeclampsia based on maternal char-

acteristics and specific biomarkers, there are fewer that predict

specifically severe preeclampsia,73–75 and a prediction model

from multiomics assays would be an important contribution to

this literature. Given the small number of womenwith severe pre-

eclampsia in our cohorts, we plan to address this topic in future

studies by analyzing cohorts richer in this pregnancy outcome.

Our study is limited by a small sample size—a typical limitation

when high-cost multiomics analysis is conducted—and consid-

eration of a cohort from a single hospital. Another limitation

comes from the fact that targeted assays (and untargeted assays

that rely on a reference database) need to be carefully validated

for the samples to which they are applied. For example, our tar-

geted aptamer-based proteomics assay has been carefully vali-

dated in human plasma samples but cannot be readily applied to

vaginal swabswithout careful validation studies. Inherently to the

machine-learning approach, developing a prediction model de-

pends on the underlying sample distribution of the data used.

Distribution shift, caused by differences among various cohorts,

can impact the performance of a machine-learning algorithm.76

For this reason, we a took special care in obtaining our results

by: (1) performing careful machine-learning analysis to avoid

overfitting; (2) validating our model on an independent cohort;

(3) demonstrating that features identified by machine learning

are statistically significant when analyzed by a separate, univar-

iate analysis; and (4) examining our prediction model in relation
Patterns 3, 100655, December 9, 2022 11



ll
OPEN ACCESS Article
to a previously established model from immunological data. In

this study, themass cytometry data were not included in themul-

tiomics prediction model because these data were not available

for 14 out of 33 women. However, integrative analysis of the

restricted set of common samples revealed important connec-

tions between our model and key immune features.

While encouraging, our results need to be validated on a

larger, more diverse set of women. If the results prove generaliz-

able, our findings demonstrating high predictive power from a

small number of urine metabolites and proteins could lead to a

simple prediction test based on a small number of urine metab-

olites, suitable for use in both developed and developing parts of

the world.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Ivana Mari�c (ivanam@stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Raw and processed untargetedmetabolomics data were deposited to theMe-

tabolomicsWorkbench with the following study IDs: ST001889 for plasma and

ST001890 for urine. The Project DOI for these studies is https://doi.org/10.

21228/M8WD84.

Our microbiome reads have been submitted to SRA. The BioProject acces-

sion is PRJNA752652.

https://dataview.ncbi.nlm.nih.gov/object/PRJNA752652?reviewer=aofjjbr2

j556u6vckeolc1i2t2.

Transcriptome data are available at:

https://drive.google.com/file/d/12JXm30he5psipz6iCiIUtZxWsy-IwG08/

view?usp=sharing.

The data that support the findings of this study have also been deposited on

GitHub in the form of csv files at https://github.com/ivanam5/Multiomics_

Preeclampsia. All data except for the clinical variables have been made avail-

able. Clinical variables cannot be shared due to the HIPAA constraints.

Code to reproducemain analyses in themanuscript is available onGitHub at

https://github.com/ivanam5/Multiomics_Preeclampsia. R software is needed

to run the code.

Study design

Weperformed a longitudinal, prospective study of a cohort of pregnant women

receiving routine ante- and postpartum care at the Lucile Packard Children’s

Hospital at Stanford University, California, as previously described.20,77

Women were eligible for the study if they were at least 18 years of age and

were in their first trimester of pregnancy. The study was approved by the Insti-

tutional Review Board of Stanford University (#21956), and all participants

signed an informed consent form.

Peripheral blood samples (for mass cytometry analysis), plasma samples

(for proteomic, transcriptomic [cfRNA], metabolomic, and lipidomic analyses),

urine samples (for metabolomic analysis), and vaginal swabs (for microbiome

analysis) were collected from each woman at two or three time points during

pregnancy. Sample collection, their analyses, and quality assessment for

some of them was previously described,9 and are presented in the supple-

mental information. The validation cohort included 16 women from the same

hospital, for which longitudinal samples with only metabolomic analyses

were available. Metabolomic analyses were performed following the same

methodology as for the discovery cohort.

Definition of preeclampsia

Preeclampsia was defined using the American College of Obstetrics and Gy-

necology classification3 as follows: hypertension that develops after 20 weeks

of gestation (systolic or diastolic blood pressure of 140 and/or 90 mmHg,

respectively, measured on at least two occasions, 4 h to 1week apart) and pro-
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teinuria (300 mg in a 24-h urine collection, a protein/creatinine ratio of at least

0.3 [each measured as mg/dL] or, if these were not readily available, a random

urine specimen containing 1+ protein by dipstick). In the absence of protein-

uria, preeclampsia was diagnosed if the presence of thrombocytopenia

(platelet count less than 100,000/mL), impaired liver function (elevated blood

levels of liver transaminases to twice the normal concentration), the new

development of renal insufficiency (elevated serum creatinine greater than

1.1 mg/dL), pulmonary edema, or new-onset cerebral or visual disturbances.

Early-onset and late-onset preeclampsia were distinguished based on

whether diagnosis was before or after 34 weeks of gestation.
Machine-learning analyses

Prediction models for each omics dataset were developed for each omics set

using an EN model.13 Given N3p matrix of predictors (measurements)

X = ðx1;.xpÞ and a vector of responses y = ðy1;.; yNÞ, regression coeffi-

cients b = ðb1;.; bpÞ and an intercept term b0 in the EN model are obtained

by maximizing the likelihood, or equivalently minimizing the negative log likeli-

hood together with L1 and L2 penalty:"
1

N

XN
i = 1

Lðb0; b; y;XÞ + lðð1 � aÞkbk2 + akbkÞ
#
: (Equation 1)

Logistic regression was used, for which the negative log likelihood evalu-

ates to

Lðb0; b; y;XÞ =
XN
i = 1

yi
�
b0 + xTi b

� � log
�
1 + eb0 + xT

i
b
�
:

For the high-dimensional setting (p[N) considered here, EN, which per-

forms both shrinkage and automatic selection of predictors, can provide

both high accuracy and facilitate interpretability. Prior to training a model,

low-variancemeasurements from transcriptome andmicrobiome were filtered

out. Other omics sets did not have near-zero variance measurements.

For integration of omics datasets (Figure 4), a nested (two-level) cross-vali-

dation approach was used to train predictive models to estimate the risk

of preeclampsia (Figure S15). At the first level, the EN model was used

as described above (Equation 1). At the second level, predictions of EN

models were integrated using stacked regression.78–80 Specifically, to use

EN models in the two-level approach, for each modality k, k = 1;.K and

data Xk = ðxk1;.xkpk
Þ, a leave-one-out ENmodel, denoted ck� iðxiÞ, was repeat-

edly fitted and evaluated at patient i. At the second level, stacked regression

with non-negative coefficients14 was used, so that the regression coefficients

of the final model ðg1;.; gKÞ were determined by

min
XN
i = 1

 
yi �

XK
k = 1

gkc
k
� i

�
xki
�!2

s:t: gi R0:

Note that the leave-one-out approach used in stacked regression has a pur-

pose to form an unbiased linear combination of ENmodels.79 In contrast to the

original stacking approach in which different prediction models fit on the same

data are stacked, here, we use the samemodel (EN) but fit to different omics to

obtain different estimators which are then stacked. A stacked regression

model can be regarded as a special case of a two-layer neural network; its spe-

cial construction provides for an easier interpretation.

We point out that the nested cross-validation is done where in each step of

cross-validation, EN models for each omics set are first trained and then the

stacked model is trained in the same step. After the stacked model is built, it

is tested on the test patient who was left out in the outer cross-validation

loop. Therefore, no leakage of information between training and test data

occurred (see detailed flowchart in Figure S15). In addition, the manuscript

is accompanied by data and source code to enable both independent repro-

duction of our results and evaluation of the machine-learning techniques

used. Furthermore, tuning of two parameters of EN algorithm, l,a shown in

Equation 1 above was also performed without using the test set data: function

cv.glmnet in R package glmnet was used for implementation on EN that inter-

nally performs a separate cross-validation using the training set to choose l.

The value of a was not optimized and it was set to a = 0.9.

mailto:ivanam@stanford.edu
https://doi.org/10.21228/M8WD84
https://doi.org/10.21228/M8WD84
https://urldefense.com/v3/__https:/dataview.ncbi.nlm.nih.gov/object/PRJNA752652?reviewer=aofjjbr2j556u6vckeolc1i2t2__;!!NLFGqXoFfo8MMQ!5tikASp-M76qsz8sjNxvWv0mTJ3JDUy6vgV6XlhmvPZmwfOak9ikloBMVMBpJgQbCf7X6WkQ
https://urldefense.com/v3/__https:/dataview.ncbi.nlm.nih.gov/object/PRJNA752652?reviewer=aofjjbr2j556u6vckeolc1i2t2__;!!NLFGqXoFfo8MMQ!5tikASp-M76qsz8sjNxvWv0mTJ3JDUy6vgV6XlhmvPZmwfOak9ikloBMVMBpJgQbCf7X6WkQ
https://drive.google.com/file/d/12JXm30he5psipz6iCiIUtZxWsy-IwG08/view?usp=sharing
https://drive.google.com/file/d/12JXm30he5psipz6iCiIUtZxWsy-IwG08/view?usp=sharing
https://github.com/ivanam5/Multiomics_Preeclampsia
https://github.com/ivanam5/Multiomics_Preeclampsia
https://github.com/ivanam5/Multiomics_Preeclampsia
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One of our main goals was to identify a small subset of biomarkers that can

predict preeclampsia with high accuracy and could thereby be used as a sim-

ple diagnostic test. For these reasons, performance of the refitted EN model

for each omics set was next evaluated by treating the EN model as a model-

selection procedure and performing a refitting step on the selected support

(features) in the same cross-validation step.81 The refitted model is then tested

on the test patient who was left out in the cross-validation loop (see detailed

flowchart in Figure S16). It is known that L1-penalization used in EN performs

excessive shrinkage of the large coefficients of the prediction model.82 Refit-

ting can resolve this problem and obtain a model with a smaller number of

features.

Finally, to investigate a possible gain from integration of available clinical

and demographic characteristics, a prediction model that takes omics (from

a specific multiomics set) and clinical and demographics variables as an input

to an EN model was fit and evaluated.

To build the model over gestation, multiple (2–3) samples available from the

same patient were treated as independent inputs to the algorithm. Once pre-

diction scores were obtained for each sample, scores for a same patient were

averaged into the final risk score for that patient. Performance was estimated

using a leave-one-out cross-validation procedure, such that in each cross-

validation step all measurements of one patient are left out from the training

set and are used for testing. In addition, urine metabolome prediction models,

with and without clinical/demographics variables, were validated on a sepa-

rate validation cohort. This dataset was produced independently of the initial

dataset and was only used once at the end. Specifically, a prediction model

was trained and its parameters determined using the discovery cohort and

was then tested only once on the validation cohort. The prediction accuracy

of the model in terms of the area under receiver-operating characteristics

curve was evaluated. t-SNE83 was used for network visualization in Figure 5.

For network visualization in Figure S13, a k-nearest-neighbor graph (with

k = 2) was constructed between features. The network layout was computed

with the LargeVis algorithm.84 The analysis was performed using R software

(version 3.6.1).

Pathway enrichment analysis

Univariate analysis was performed to identify features with significant associ-

ations between each feature and the pregnancy outcome, both in early preg-

nancy (Wilcoxon signed-rank test) and over gestation (LME model). The

Benjamini-Hochberg procedure was used to control the FDR.85 Metabolome

pathway enrichment analysis on identified metabolites was performed using

MetaboAnalyst.86 The hypergeometric test was used for over-representation

analysis in MetaboAnalyst. Proteome pathway enrichment analysis was per-

formed using GeneOntology87,88 and topology-based Gene Ontology scoring

(topGo), an R software package. Circular Gene Ontology (CirGO) software for

visualizing two-level hierarchically structured gene ontology terms89 was used

to visualize proteome and transcriptome pathway enrichment.
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