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ARTICLE INFO ABSTRACT

Keywords:
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Objective: Predicting the risk of falls in advance can benefit the quality of care and potentially reduce mortality
and morbidity in the older population. The aim of this study was to construct and validate an electronic health
Aged record-based fall risk predictive tool to identify elders at a higher risk of falls.

Electronic health records Methods: The one-year fall prediction model was developed using the machine-learning-based algorithm,
Supervised machine learning XGBoost, and tested on an independent validation cohort. The data were collected from electronic health records
(EHR) of Maine from 2016 to 2018, comprising 265,225 older patients (=65 years of age).

Results: This model attained a validated C-statistic of 0.807, where 50 % of the identified high-risk true positives
were confirmed to fall during the first 94 days of next year. The model also captured in advance 58.01 % and
54.93 % of falls that happened within the first 30 and 30-60 days of next year. The identified high-risk patients
of fall showed conditions of severe disease comorbidities, an enrichment of fall-increasing cardiovascular and
mental medication prescriptions and increased historical clinical utilization, revealing the complexity of the
underlying fall etiology. The XGBoost algorithm captured 157 impactful predictors into the final predictive
model, where cognitive disorders, abnormalities of gait and balance, Parkinson’s disease, fall history and os-
teoporosis were identified as the top-5 strongest predictors of the future fall event.

Conclusions: By using the EHR data, this risk assessment tool attained an improved discriminative ability and can
be immediately deployed in the health system to provide automatic early warnings to older adults with increased
fall risk and identify their personalized risk factors to facilitate customized fall interventions.

1. Introduction to reach $55 billion dollars by 2020 [4]. Therefore, providing an early

warning tool of fall risk in the older population could alert care-givers

In adults over 65 years old, fall is recognized as a major cause of
injury and hospital admission for trauma and related death worldwide
[1]. The estimated incidence rates of fall range from 28 % to 35 % per
year for community-dwelling older people, while about 20 % of those
fallen people require medical attention, and 5 % would experience
fractures and severe head injuries [2]. In the U.S., the total fall-related
medical costs were more than $50 billion in 2015 [3], and are expected

of individuals’ risk of fall, activate individualized interventions for
high-risk individuals, and eventually reduce fall rate and corresponding
medical costs.

In the older population, the fall risk factors can be divided into two
categories, that is, intrinsic and environmental factors. For intrinsic
factors, besides advanced age and gender [4], many disease conditions
and physical dysfunctions were reported to associate with an increased
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risk of fall, such as, muscle weakness, gait and balance problems, poor
vision, postural hypotension and many chronic diseases (i.e., osteo-
porosis, stroke, cognitive impairment, epilepsy and dementia). Fur-
thermore, medications used to treat mental disorders, diabetes and
cardiovascular diseases, as well as nonsteroidal anti-inflammatory
drugs (NSAID) are also recognized to have strong association with in-
creased fall risk. In terms of extrinsic risk factors, unsafe residence and
neighborhood environment are major fall causal effects [5].

Traditional fall risk assessment tools are physical function evalua-
tions that monitor an individual’s static and dynamic gait and balance
performance [4,6], such as the Timed Up and Go (TUG) test [7]. An-
other class of assessment tools are generated from fall-related risk
factors collected from literatures or questionnaires [8], such as the fall
risk model, FRAT-up. However, such meta-analysis-based approach
may be subject to low accuracy when population heterogeneity and bias
in odds-ratio estimates exist [9]. Since the majority of intrinsic risk
factors are enriched in the routinely collected real-time electronic
health records (EHR), an EHR-based fall risk assessment tool should be
considered as an efficient solution to discover discriminant clinical
patterns and crucial triggers of fall. Recently, several models were de-
veloped by using patients’ outpatient, emergency or inpatient records
[10-13], most of which adopted traditional statistical approaches of
survival model or cox regressions [11,14]. A multivariate logistic re-
gression model incorporated patients’ demographic characteristics,
health status, medication and vital signs information to predict unin-
tentional fall risk and attained a retrospective C-statistic of 0.79 [13].
These prediction models’ discriminative ability has been significantly
improved, especially when the EHR data were updated in high fre-
quency. Nevertheless, the high dimensional EHR data usually requires
the integrated algorithms to have the capacity of parallel analysis of
thousands of clinical parameters simultaneously, as well as the ability
of efficient dimensionality reduction. We wonder whether the accuracy
of such tools could be further improved if advanced machine learning
algorithms were introduced.

In this study, we aimed to develop an EHR-based risk assessment
model to forecast patients’ fall risk in the following one year. By using
the EHR data from the older population in the State of Maine, U.S., and
the advanced machine learning algorithm, we expected that the new
model could uncover the underlying clinical and pathophysiological
patterns/interactions of impactful predictors, and eventually reach an
improved accuracy.

2. Method
2.1. Dataset

The study cohort was formed by patients with age of 65 years and
older that visited Maine health care facilities, including 35 hospitals, 34
federally qualified health centers, from April 1, 2016 to March 30,
2018. This retrospective dataset was a subset of the health information
exchange (HIE) network and was authorized by the HealthInfoNet or-
ganization after the de-identification process. The personal information
was removed during the analysis and publication procedure. This study
was exempted from ethics review by the Stanford University institu-
tional review board. The inclusion and exclusion criteria were sum-
marized in Fig. 1. A total of 265,225 individuals were recruited in this
study.

2.2. Definition of fall and predictive variables

A fall record was defined according to the codes of W00-W119 and
R29.6 from the International Classification of Diseases-10 (ICD-10) [1].
To predict the risk of new-incident fall in the following one year, we
compiled EMR datasets of the patients for their fall records from April
1, 2017 to March 30, 2018. Patients who suffered multiple falls during
the targeted time frame were chart-reviewed by internal physician
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curators such that only the first fall records were utilized in our ana-
lysis. As a result, a total of 4361 falls were identified, and a binary
outcome label (1 or 0) was assigned to the cases and controls as the
predictive dependent variables.

Accordingly, the candidate predictors were extracted from the EHR
dataset during the time period of April 1, 2016 to March 30, 2017,
which were mainly demographic characteristics, clinical utilization
features, disease diagnosis from ICD-10 codes, medication prescriptions
from National Drug Code (NDC), and laboratory test results from
Logical Observation Identifiers Names and Codes (LOINC). We sampled
the case or control group to randomly divide the same group subjects to
2:1 (training:testing) subgroups. Subsequently, these 2/3 or 1/3 of the
case and control subjects were combined to form the training or testing
cohort respectively. Therefore, the training or testing dataset was
stratified and divided, rather than constructed by pure random.

2.3. Predictive model development and evaluation

Before the modeling process, an initial univariate logistic regression
was introduced in the derivation cohort to perform the feature pre-
screening routine. As a result, a total of 10,198 predictive variables
from the EHR dataset passed the significant criteria (p value < 0.05)
and were treated as the inputs of the following machine learning pro-
cess. The predictive model was built on the derivation cohort by two
steps. First, several advanced linear or non-linear machine learning
algorithms were adopted to construct the predictive model, including
Random Forest (RF) [15], XGBoost [16], Lasso [17], K-nearest neigh-
bors (KNN) [18] and Support Vector Machine (SVM) [19]. R libraries of
randomForest, xgboost, glmnet, FNN and e1071 were applied respec-
tively. The details of parameter tuning process were carefully in-
troduced for these machine learning algorithms in the Appendix B.
Supplementary Methods.

Second, under each derived predictive model, we applied a cali-
bration process based on the positive predictive values (PPVs) to assign
an estimated risk score to each individual. The Isotonic Regression, one
of the two classical calibration algorithms and suitable for tree-based
models [20], was used to do the calibration. To correct any monotonic
distortion, Isotonic Regression tried to align the final risk score with the
real probability or PPV in a risk bin. In our case, after the initial risk
estimates were derived from the above models, a PPV for a certain
estimate was calculated as the proportion of cases in the group of pa-
tients having risk estimates the same as or larger than this estimate.
This PPV, as the measured probability of fall among patients receiving
initial risk estimates the same as or larger than this score, was then
assigned to corresponding individuals as the calibrated risk score. For
instance, a patient got an initial risk score of 0.72 from the derived
model while a total of 49 individuals attained their initial risk estimates
> 0.72 and 8 of them were cases, then the PPV (i.e., the calibrated risk
score) aligned to 0.72 was calculated as 0.16 (8/49).

In the evaluation phase, the models built by different machine
learning algorithms were applied to the validation cohort. Following
that, we chose the one attaining the highest prediction accuracy (C-
statistic) and computational efficiency as our final machine-learning-
based predictive model. The ROC curve, sensitivities, as well as the
PPVs were assessed. The stratified (low/intermediate/high) risk groups
were assigned according to the relative risk, which was calculated by
the calibrated risk score divided by population-based fall incidence
rate. The intermediate-risk group was formed by a group of patients
with averaged relative risk greater than 1 but less than 5, indicating a
moderate risk of fall for the next year, while the high-risk category
caught the individuals with averaged relative risk of fall equal to or
greater than 5, indicating a much higher risk of fall for the next year
comparing to the general population. The stratified fall-risk groups
were further evaluated in the faller’s population over their time of fall.
After that, the odds ratios (ORs) and 95 % confidence intervals (CIs)
were calculated for the captured predictive variable. The most
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EHR database from
the State of Maine

X timeframe:

I From April 1, 2016 to March 30, 2017
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Candidate predictors:
> Demographics;
> Disease diagnoses;
» Medication prescriptions;
» Clinical utilizations;
> Laboratory test results;
> ..

Y timeframe

From April 1, 2017 to March 30, 2018
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Various machine learning technologies
Xgboost; Random Forest;
Lasso; SVM; KNN

l Prediction model construction

Derivation cohort and calibration

Inclusion criteria:
age 2 65, visited health care facilities.
Exclusion criteria:
1) age < 65 years old;
2) individuals did not have any active
encounter 1 years or died before April 1,
2016.
Fall cases:
Patients > 65 years old with a fall event
according to the ICD-10 definition (including
WO00-W19, R29.6).

Validation cohort

Apply
Low risk category _8’
Mode) Medium risk category
evaluation \
i High risk category 6
v AUC
v PPV
I I v’ Sensitivity
L v" Subgroup analysis

Fig. 1. Study design. The study cohort was derived from EHRs of patients with age of 65 years and older that visited Maine health care facilities and divided into the

derivation and validation cohorts for model development and evaluation.

impactful predictors were then carefully investigated between the de-
rived fall-risk categories (low, intermediate and high risk of fall in the
following one year), revealing the clinical patterns and characteristics
of patients in the high-risk category (i.e., disease comorbidity and
concurrent medication therapies). In addition, the importance rank of
the predictors was also assessed by the Lasso regression, uncovering the
contribution of each predictor to the derived risk scores.

3. Results
3.1. Baseline characteristics

The dataset of older patients (=65 years old) was stratified and
divided into the derivation and validation cohorts in the ratio of 2:1,
which comprised 176,816 and 88,409 patients, respectively. The
baseline characteristics of the derivation and validation cohorts were
listed in Table A. 1. Since the two cohorts were separated in a ratio,
their baseline characteristics were all similarly distributed with no
statistical difference, with the observed fall rates of 1.64 % for both
cohorts. As a record of fall in EHR-based data essentially requires injury
and subsequent visit to the doctor/hospital, those falls without injury
would be missed in our study, leading to the much lower observed fall
rate in our study than that from a general older population (i.e.,
28%-35%).

3.2. Model performance

The fall risk prediction model was built on the derivation cohort and
evaluated on the validation cohort. In summary, the XGBoost-based
model had the best performance among various machine learning al-
gorithms, attaining fitted and predicted C-statistics of 0.862 and 0.807
respectively (Fig. 2, Fig. A. 1). In the validation stage, with a total of
88,409 individuals, the developed fall-risk model classified 89.14 %
(78,808/88,409) of them into the low-risk category, with a PPV as low
as 1.04 %, whereas it identified 10.26 % (9075/88,409) and 0.59 %
(526/88,409) of individuals into the intermediate and high risk groups
of fall in the future one year, with PPVs of 6.31 % and 11.03 %,

1.0

0.8

06

04

The C-statistic on derivation phase = 0.862
The C-statistic on validation phase = 0.807

0.0

T T T T T T
0.0 02 04 06 0.8 10
Fig. 2. The ROC curves derived from the derivation and validation stages based
on the XGBoost algorithm.

respectively (Table A. 2). Here, the PPV of a certain risk group was
calculated as the number of cases divided by the number of members
belong to this risk group, indicating the probability of falls in the risk
group, while the relative risk was calculated as the PPV divided by
population-based fall incidence rate, implying the relative risk of fall in
this group compared to the general population. In the validation stage,
the high and intermediate-risk category attained the relative risk of 6.7
and 3.9 while the low-risk category attained a much lower relative risk
of less than 1.

In total, our approach successfully identified in advance 43.4 % of
falls that happened all through the entire next year. When examining
those short-term falls, our model captured more than 50 % of the events
that happened within the first 80 days of the next year by classifying
them into high and intermediate-risk categories (Fig. 3a). In particular,
this percentage increased to 58.01 % and 54.93 % for the falls that
happened within the first 30 and 30-60 days of next year. Furthermore,
50 % of high-risk and intermediate-risk true positives were confirmed
to fall during the first 94 and 126 days of the next year respectively
(Fig. 3b). On the contrary, those false-negative falls being classified into
the low-risk category, tend to occur much later, with 65 % of which



C. Ye, et al.

a)

Percentage of cases in fall risk groups

International Journal of Medical Informatics 137 (2020) 104105

0 80 100 200 300
Confirmed fall date
b) 1.00
> = High-risk
=
3 Intermediate-risk
g 0.75 — = Low-risk
o
& 65.13%
.
c
g
3 050
]
o
v I
£ .
0.25 |
p < 0.0001 [ |
0.00 | | T
1
0 30 60 90 120 180 210 240 270 300 330 360

Time

Fig. 3. a) Percentages of captured true-positive alters in the faller population, coordinated by the spectrum of their confirmed date of falls in the following one year
(loess curve). b) The survival probability of fallers identified in three fall-risk categories over the following one year.

happened after the first 120 days. These findings indicated our model’s
promising prediction accuracy particularly for short-term falls.

Based on a pool of 10,198 predictor candidates, the XGBoost algo-
rithm eventually captured 157 impactful features to form the final
predictive model. These identified predictors were mainly demographic
features (age and gender), chronic disease diagnoses, medication pre-
scriptions and clinical utilization indicators. The most impactful 55
features are summarized in the Table A. 3, with their ORs or coefficients
and 95 % CIs calculated from the univariate logistic regression in the
validation cohort. Age was recognized as the strongest predictor of falls
in the older people, attaining an OR of 6.07 in the validation cohort.
Females were more likely to have a fall event than male in our dataset,
which was consistent with previous findings [4].

3.3. Significant predictors

Almost half of predictors involved in the model were diagnoses of
diseases (acute/chronic) and physical dysfunctions. The conditions with
ORs > 3 were abnormalities of gait and mobility, Parkinson’s disease
(PD), cognitive diseases (neurodegenerative diseases, including
Alzheimer's disease), orthostatic hypotension, cerebral infarction, heart
failure and muscle disorders (Table A. 3). When compared to the low-
risk category, the high-risk individuals were more likely to have the
disease conditions of cognitive disease and abnormalities of gait and
balance, with relative risks > 8, and resulting in a high rate of con-
firmed falls (> 12 %) in the future one year (Fig. 4a). Here the relative

risk was calculated as the ratio of the probability of a certain disease
occurring in the high-risk category versus the probability of that disease
in the low-risk category. Another critical predictor, abrasion of knee,
was not a quite common condition in the high-risk category (1%) but
attained the highest relative risk (131.10) comparing to the low-risk
category and also confirmed to have a high rate of fall in the following
year (14 %). Diseases located on the right upper side of Fig. 4a all re-
vealed their increased dominance in the high-risk category and the
higher confirmed fall rate.

Another large group of predictors engaged in our model was med-
ications for various diseases or conditions. Most were used to treat
cardiovascular diseases, mental disease and epilepsy. Loop diuretic,
beta-adrenergic blocker, antiepileptics attained ORs > 3, and selective
serotonin reuptake inhibitors (SSRIs), atypical antipsychotic, choli-
nergic muscarinic antagonist, serotonin and norepinephrine reuptake
inhibitor (SNRI) reached ORs > 2.5 in our validation cohort (Table A.
3). Patients treated by antiepileptics or tricyclic antidepressants (TCAs)
were not only enriched in the high-risk category (i.e., relative risks of 5,
calculated as the ratio of the probability of undertaking the medication
in the high-risk category versus that probability in the low-risk cate-
gory), but also attained the highest rate of confirmed fall in the next one
year (16.41 % and 16.67 %, respectively), indicating their powerful
predictive value (Fig. 4b). The high-risk category was also enriched by
individuals with prescriptions of beta-adrenergic blocker and loop
diuretic, opioid agonist and Nonsteroidal anti-inflammatory drugs
(NSAID).
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Fig. 4. Patients’ relative risk of a) carrying certain diseases and b) undertaking
certain medications in the high-risk category versus that in the low-risk cate-
gory, coordinated by the confirmed fall rate of each sub-cohort in the high-risk
category. These 17 diseases and 18 medications all significantly contributed to
the built fall risk model. The percentage of patients in the high-risk category
with each circumstance is denoted by the size of circles.

High-risk category
30000 . 7 8
low-risk category

20000

10000

Past 12-month averaged cost per person ($)
©

0 10 20 30
Number of Different Medications

Fig. 5. The distribution of patients’ average clinical costs in the past 12 months
against their average number of distinct medication prescriptions for the de-
fined disease comorbidity subgroups (determined by the counts of top 20 as-
sociated disease conditions a patient had). The size of the circles represents the
percentage of patients with certain comorbidity in the validation cohort.

In our study, several EHR-derived disease comorbidity and clinical
utilization indicators also revealed their predictive power in the fall risk
model. They were counts of disease diagnoses, counts of medication
consumptions, counts of outpatient/emergency admissions, lengths of
inpatient stay, and total clinical cost during last year (Table A. 3). As
Fig. 5 showed, over 50 % of the high-risk patients had severe disease
comorbidity (=5 fall-associated diseases) and also received an in-
creased number of medications, leading to an inflation of their total
healthcare costs, while only 7% of the low-risk patients had such severe
level of disease comorbidity.

Fall history was also confirmed in our study as one of the most
important predictors of future-one-year falls, reaching an OR of 5.27 in
the validation cohort. In the Lasso regression that treated the derived
fall-risk scores as outcome variable, fall history was recognized as the
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4th important variable, and together with cognitive diseases, abnorm-
alities of gait and balance, Parkinson’s disease and osteoporosis, in the
rank of priority, formed the top-5 contributors to the variation of risk
scores (Table A. 4).

4. Discussion
4.1. Summary of the study

In this study, we constructed an EHR-based fall risk predictive
model that adopted a machine-learning-based algorithm, XGBoost, to
automatically integrate useful clinical information of disease diagnoses,
medication consumption, clinical utilization, lab-test results and pre-
dicted an older individual’s risk of fall in the future one year. In the
validation phase, this model attained a C-statistic of 0.807, and strati-
fied individuals into three distinct risk categories of fall (high, inter-
mediate and low). About 43.4 % of the individuals that had a confirmed
fall event in the future one year were classified into the increased risk
categories. More importantly, our model successfully captured 58.01 %
and 54.93 % of falls that happened within the first 30 and 30-60 days of
next year into the risky group, respectively. 50 % of the identified high-
risk true positives were confirmed to fall during the first 94 days of the
next year, indicating the model’s better performance for the short-term
fall prediction.

4.2. The machine learning algorithms

The high-dimensional EHR data usually requires the algorithms to
have the capacity of handling thousands of correlated clinical para-
meters simultaneously, where the number of parameters is usually
much greater than the number of samples. Therefore, the traditional
statistical methods may not be applicable due to their limitations such
as reliance on assumptions, low computational efficiency and disability
of handling high-dimensional data. Under this circumstance, the data-
driven machine-learning approaches can be a good choice [21-23]. In
this study, we included several popular linear and non-linear machine
learning algorithms: RF is known to be robust to overfitting and cor-
related variables [24]; XGBoost is consistently rated as one of the best-
performing machine learning algorithms nowadays [24]; Lasso is a
linear algorithm and well-suited for sparse data setting when only a
small number of variables would be valuable predictors in the model
[25]; SVM scales relatively well in high dimensional data when the
structure of the data is unknown; KNN was involved as a reference for
its simplicity to implement and no requirement of data training process
[26].

The results showed the XGBoost-based prediction model attained
the highest prediction accuracy. The XGBoost algorithm has advantages
of considering multiple potentially correlated predictors simulta-
neously, being able to handle possible underlying non-linear correla-
tions (e.g., high-dimension interactions/correlations). In addition, the
algorithm has high computational efficiency, and can provide variable
importance table for model interpretation. As a member of tree-based
modeling algorithm, XGBoost has been proven to have an innate ability
to be robust to highly correlated variables [27]. We introduced a cor-
relation screening process to remove redundant variables with
spearman correlation > 0.7 before the modeling phase. With the sur-
vived 6949 variables, the XGBoost algorithm attained fitted and pre-
dicted C-statistics of 0.851 and 0.803, respectively. This finding with
similar predictive performance to that of our original model without the
screening (0.862 and 0.807), revealed that, elimination of the re-
dundant variables from our EHR feeds would not have major impacts to
improve XGBoost’s predictive accuracy. Uniquely, XGBoost’s tolerance
of feature redundancy can train to give higher weights to a combination
of highly predictive but also correlated features, and simultaneously
provide additional clues for posterior risk interpretation. For instance,
the two variables, previous-year distinct diagnoses and patient's
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medical cost, both were retained in our original prediction model with
high weights. However, both variables are with a strong spearman
correlation of 0.78, implying that the severe disease comorbidity and
the subsequent increase of clinical utilization are instrumental for the
prediction of the risk of fall.

For other used algorithms, RF is similar to XGBoost, but resulted in
disappointing performance in our study using the default parameter
settings (Fig. A. 1). Comparing to XGBoost, RF has less computational
efficiency, preventing additional tuning of the parameters to improve
the performance. As a linear prediction method, Lasso’s low perfor-
mance on the prediction may indicate non-linear associations between
EHR-based fall risk variables. SVM’s performance relies on the choice of
kernel function, which may be chosen inappropriately in our case
leading to the bias [28]. KNN’s low accuracy may arise from its sensi-
tivity to the large amount of noises in our high-dimensional EHR data
[29].

In our study, the fall risk prediction model was constructed on the
derivation cohort (2/3) and evaluated on the validation cohort (1/3). In
addition, the K-fold cross validation, was also tried to evaluate the
performance of XGBoost. Rather than using a pre-divided derivation set
(2/3) for training and a validation set (1/3) for testing, our 10-fold
cross-validation estimated the algorithm’s performance by going
through the entire dataset for both training and validation [28]. As a
result, the mean of validated C-statistics in the 10-fold cross-validation
attained a value of 0.815, slightly higher than our validated C-statistic
(0.807) using the 1/3 testing cohort. Our K-fold cross validation results
are in line with our training/testing results, supporting the robustness
of our XGBoost model on prediction.

4.3. Implications of the findings

In our study, disorders related to cognitive impairments were the
dominant group of diagnostic predictors, including Alzheimer’s disease,
amnesia, symptoms and signs of cognitive functions and awareness, and
degenerative diseases of nervous system. Cognitive disorders could in-
fluence elders’ attention, executive function, information processing
and reaction time, cause functional dependency and disabilities, and
lead to gait and balance problems [30]. Plenty of studies had revealed
that the increased fall risk in PD patients was mainly affected by the PD-
induced declined cognition, losing control/sensation of limbs, increased
disability in many gait-dependent activities [31]. Other identified pre-
dictors, such as epilepsy, recurrent seizures, cardiovascular and cere-
brovascular diseases, and lower extremity strength (e.g., abrasion of
knee and muscle disorders) can induce gait and balance complications,
which were recognized as triggers of fall in multiple studies [32,33].
Therefore, those identified disease conditions were strongly correlated
with each other, and performed interactively to increase fall risk.

In terms of medications, psychotropic medications treating depres-
sion, bipolar and anxiolytics were proven to steadily increase the risk of
fall in older adults [34], many of which were predictors in our built
model, such as SNRIs, SSRIs, TCAs, benzodiazepines and so on. The
captured cardiovascular medications contained diuretics, Angiotensin
Converting Enzyme Inhibitors (ACE inhibitors), 3-adrenergic blockers,
B2 agonists and aldosterone antagonists, most of which were anti-
hypertensive drugs. Our study and several population-based studies
revealed a positive correlation between the antihypertensive medica-
tions and an increased risk of fall injuries [35,36], whereas others il-
lustrated that ACE inhibitors or calcium channel blockers could reduce
such risk [36]. Such controversial findings should be addressed by more
advanced studies. In addition, the captured NSAID [37], cholinergic
muscarinic antagonists [38] and antiepileptics [39] were recognized as
fall risk factors for a long time, while the identified B2 agonists, as a
medication to treat asthma and other pulmonary disorders, could cause
headache, tremor and muscle cramps [40], and was also proven to be a
risk factor of fall.
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4.4. Utilization and benefits of the fall risk predictive model

In our study, the identified high-risk patients of fall have shown
severe disease comorbidities, increased number of distinct medication
prescriptions and much higher historical clinical costs. With the ad-
vantages of diverse and readily accessible data source, the EHR-based
fall prediction could be an ideal and beneficial tool as the first step to a
feasible fall prevention strategy. When those older adults with high risk
of fall were identified, their personal unique risk factors would be
captured, and their fall preventing strategies could be designed and
proposed accordingly. For instance, educations to improve the aware-
ness of fall risk, minimization or withdrawal of specific psychoactive or
cardiovascular medications, detailed exercise therapies for patients
with balance and gait issues. It is hoped that, by implementing the fall
prediction procedure and the corresponding interventions, the fall in-
cidence rate could be reduced and the quality of life in older population
could be improved eventually.

As a limitation, our EHR-based dataset suffered from under-re-
porting issue for falls without injury, resulting in a much lower fall rate
than that in the community-dwelling older population. Furthermore,
the mental illness diagnoses have been masked in our dataset for
privacy protection in Maine. As a result, the confounding effect be-
tween the masked psychotic disorders and the used medication cannot
be directly ascertained in our study. Another limitation is that, the
medication consumptions were binarily coded in our study, while the
dosage information was not considered, which should be taken into
account in the future studies.

5. Conclusion

In conclusion, we have constructed and validated a powerful risk
assessment tool to predict older adults’ risk of fall in the future one year,
by using the EHR data from the older population in Maine. We hope
that this constructed fall risk assessment tool could be immediately
deployed to provide early warnings to older adults with increased fall
risk and identifying their personalized risk factors to facilitate custo-
mized fall interventions.

Summary points

What is already known:

Traditional fall risk assessment tools are mainly physical
function evaluations that monitor an individual’s static and dy-
namic gait and balance performance.

Electronic health records have been recognized as a good
source for disease management and disease risk prediction.

Most existing EHR-based fall risk models were developed
using traditional statistical approaches, such as logistic regres-
sions or cox regressions.

What this study has added:

By using the advanced machine-learning algorithms, this
new risk assessment tool attained an improved discriminative
ability from the statewide electronic health records and can alarm
automatically for elders at increased risk of falls during the next
one year.

This new tool successfully captured high-risk fallers with
conditions of severe disease comorbidities, an enrichment of fall-
increasing cardiovascular or mental drugs and increased histor-
ical clinical utilization.

This risk assessment tool can be immediately deployed in
the electronic health system to provide early warnings, recognize
personalized risk factors and facilitate customized fall interven-
tions.
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